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A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, Ace. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (Ace)', consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specihc heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT, at T=O'K to zero at T,. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.

I. INTRODUCTION

'HE main facts which a theory of superconductivity
must explain are (1) a second-order phase

transition at the critical temperature, T„(2) an elec-
tronic specific heat varying as exp( —Ts/T) near
T=O'K and other evidence for an energy gap for
individual particle-like excitations, (3) the Meissner-
Ochsenfeld effect (B=O), (4) effects associated with
infinite conductivity (E=O), and (5) the dependence
of T, on isotopic mass, T,QM=const. We present
here a theory which accounts for all of these, and in
addition gives good quantitative agreement for specific
heats and penetration depths and their variation with
temperature when evaluated from experimentally
determined parameters of the theory.

When superconductivity was discovered by Onnes'

(1911),and for many years afterwards, it was thought
to consist simply of a vanishing of all electrical re-
sistance below the transition temperature. A major
advance was the discovery of the Meissner eGect'

(1933),which showed that a superconductor is a perfect
diamagnet; magnetic Aux is excluded from all but a
thin penetration region near the surface. Not very long
afterwards (1935), London and London' proposed a
phenomenological theory of the electromagnetic prop-
erties in which the diamagnetic aspects were assumed
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basic. F. London4 suggested a quantum-theoretic
approach to a theory in which it was assumed that
there is somehow a coherence or rigidity in the super-
conducting state such that the wave functions are not
modified very much when a magnetic Geld is applied.
The concept of coherence has been emphasized by
Pippard, ' who, on the basis of experiments on pene-
tration phenomena, proposed a nonlocal modification
of the London equations in which a coherence distance,
gs, is introduced. One of the authors' r pointed out that
an energy-gap model would most likely lead to the
Pippard version, and we have found this to be true of
the present theory. . Our theory of the diamagnetic
aspects thus follows along the general lines suggested
by London and by Pippard. 7

The Sommerfeld-Bloch individual-particle model
(1928) gives a fairly good description of normal metals,
but fails to account for superconductivity. In this
theory, it is assumed that in first approximation one
may neglect correlations between the positions of the
electrons and assume that each electron moves inde-
pendently in some sort of self-consistent field deter-
mined by the other conduction electrons and the ions.
Wave functions of the metal as a whole are designated
by occupation of Bloch individual-particle states of
energy e(k) defined by wave vector k and spin o", in
the ground state all levels with energies below the
Fermi energy, 8&, are occupied; those above are
unoccupied. Left out of the Bloch model are correlations
between electrons brought about by Coulomb forces
and interactions between electrons and lattice vibrations
(or phonons).

4 F. London, Proc. Roy. Soc. (London) A152, 24 (1935);
Phys. Rev. 74, 562 (1948).' A. B.Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).

6 J. Bardeen, Phys. Rev. 97, 1724 (1955).
7 For a recent review of the theory of superconductivity, which

includes a discussion of the diamagnetic properties, see J.Bardeen,
Eecyclopedia of Physics (Springer-Verlag, Berlin, 1956), Vol. 15,
p. 274.
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Most of the relatively large energy associated with
correlation effects occurs in both normal and super-
conducting phases and cancels out in the difference.
One of the problems in constructing a satisfactory
microscopic theory of superconductivity has been to
isolate that part of the interaction which is responsible
for the transition. Heisenberg' and Koppe' proposed a
theory based on long-wavelength components of the
Coulomb interaction, which were presumed to give
fluctuations in electron density described roughly by
wave packets localizing a small fraction of the electrons
on lattices moving in different directions. A great
break-through occurred with the discovery of the iso-
tope effect, " which strongly indicated, as had been
suggested independently by Frohlich, " that electron-
phonon interactions are primarily responsible for
superconductivity.

Early theories based on electron-phonon interactions
have not been successful. Frohlich's theory, which
makes use of a perturbation-theoretic approach, does
give the correct isotopic mass dependence for Ho, the
critical field at T=O'K, but does not yield a phase
with superconducting properties and further, the energy
difference between what is supposed to correspond to
normal and superconducting phases is far too large.
A variational approach by one of the authors" ran into
similar diKculties. Both theories are based primarily
on the self-energy of the electrons in the phonon field
rather than on the true interaction between electrons,
although it was recognized that the latter might be
important. "

The electron-phonon interaction gives a scattering
from a Bloch state defined by the wave vector k to
k'=k~x by absorption or emission of a phonon of
wave vector x. It is this interaction which is responsible
for thermal scattering. Its contribution to the energy
can be estimated by making a canonical transformation
which eliminates the linear electron-phonon interaction
terms from the Hamiltonian. In second order, there is
one term which gives a renormalization of the phonon
frequencies, and another, H&, which gives a true inter-
action between electrons, independent of the vibrational
amplitudes. A transformation of this sort was given
6rst by FrOhlich'4 in a formulation in which Coulomb
interactions between electrons were disregarded. In a
later treatment, Nakajima" showed how such inter-

W. Heisenberg, Two Lectures (Cambridge University Press,
Cambridge, 1948).

'H. Koppe, Ergeb. exakt. Naturw. 23, 283 (1950); Z. Pbysik
148, 135 (1957).' K. Maxwell, Phys. Rev. 78, 477 (1950); Reynolds, Serin,
Wright, and Nesbitt, Phys. Rev. 78, 487 (1950).

"H. Frohlich, Phys. Rev. 79, 845 (1950)."J.Bardeen, Phys. Rev. 79, 167 (1950); 80, 567 (1950); 81,
829 (1951).

"For a review of the early work, see J. Bardeen, Revs. Modern
Phys. 23, 261 (1951).

'4 H. Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952)."S.Nakajima, Proceedings of the International Conference on
Theoretical Physics, Eyoto and Tokyo, September, 1953 (Science
Council of Japan, Tokyo, 1954).

actions could be included. Particularly for the long-
wavelength part of the interaction, it is important to
take into account the screening of the Coulomb field of
any one electron by other conduction electrons. Such
effects are included in a more complete analysis by
Bardeen and Pines, "based on the Bohm-Pines collec-
tive model, in which plasma modes are introduced for
long wavelengths.

We shall call the interaction, H2, between electrons
resulting from the electron-phonon interaction the
"phonon interaction. " This interaction is attractive
when the energy difference, A~, between the electron
states involved is less than fior. Diagonal or self-energy
terms of Hs give an energy of order of —1V(8') (Ro)',
where 1V(8+) is the density of states per unit energy at
the Fermi surface. The theories of Frohlich and Bardeen
mentioned above were based largely on this part of the
energy. The observed energy differences between super-
conducting and normal states at T=O'K are much
smaller, of the order of —cV(8p)(kT.)' or about 10 '
ev/atom. The present theory, based on the off-diagonal
elements of H2 and the screened Coulomb interaction,
gives energies of the correct order of magnitude. While
the self-energy terms do depend to some extent on the
distribution of electrons in k space, it is now believed
that this part of the energy is substantially the same in
the normal and superconducting phases. The self-energy
terms are also nearly the same for all of the various
excited normal state configurations which make up the
superconducting wave functions.

In a preliminary communication, " we gave as a
criterion for the occurrence of a superconducting phase
that for transitions such that he(Ace, the attractive
H2 dominate the repulsive short-range screened Cou-
lomb interaction between electrons, so as to give a net
attraction. We showed how an attractive interaction of
this sort can give rise to a cooperative many-particle
state which is lower in energy than the normal state by
an amount proportional'to (5")', consistent with the
isotope effect. We have since extended the theory to
higher temperatures, have shown that it gives both a
second-order transition and a Meissner effect, and have
calculated specific heats and penetration depths.

In the theory, the normal state is described by the
Bloch individual-particle model. The ground-state wave
function of a superconductor is formed by taking a
linear combination of many low-lying normal state
configurations in which the Bloch states are virtually
occupied in pairs of opposite spin and momentum. If
the state kP is occupied in any configuration, —k& is
also occupied. The average excitation energy of the
virtual pairs above the Fermi sea is of the order of kT, .
Excited states of the superconductor are formed by
specifying occupation of certain Bloch states and by
using all of the rest to form a linear combination of

"J.Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
"Bardeen, Cooper, and Schrie6'er, Phys. Rev. 106, 162 (1957).
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virtual pair configurations. There is thus a one-to-one
correspondence between excited states of the normal
and superconducting phases. The theory yields an
energy gap for excitation of individual electrons from
the superconducting ground state of about the observed
order of magnitude.

The most important contribution to the interaction
energy is given by short- rather than long-wavelength
phonons. Our wave functions for the suerconducting
phase give a coherence of short-wavelength components
of the density matrix which extend over large distances
in real space, so as to take maximum advantage of the
attractive part of the interaction. I'he coherence
distance, of the order of Pippard's $s, can be estimated
from uncertainty principle arguments. ' ~ If intervals of
the order of Ak (kT./hr)kr 10' cm ' are important
in k space, wave functions in real space must extend
over distances of at least d,x 1/Ak 10 4 cm. The
fraction of the total number of electrons which have
energies within kT, of the Fermi surface, so that they
can interact effectively, is approximately kT,/Sn 10 '.
The number of these in an interaction region of volume
(Ax)' is of the order of 10"&& (10 ')'&&10 '=10' Thus
our wave functions must describe coherence of large
numbers of electrons. "

In the absence of. a satisfactory microscopic theory,
there has been considerable development of phenome-
nological theories for both thermal and electromagnetic
properties. Of the various two-Quid models used to
describe the thermal properties, the first and best known
is that of Gorter and Casimir, "which yields a parabolic
critical field curve and an electronic specific heat
varying as T'. In this, as well as in subsequent theories
of thermal properties, it is assumed that all of the
entropy of the electrons comes from excitations of
individual particles from the ground state. In recent
years, there has been considerable experimental evi-
dence" for an energy gap for such excitations, decreasing
from 3kT. at T=O'K to zero at T=T,. Two-Quid

models which yield an energy gap and an exponential
specific heat curve at low temperatures have been
discussed by Ginsburg" and by Bernardes. "Koppe's

' Our picture diGers from that of Schafroth, Butler, and
Blatt, Helv. Phys. Acta 30, 93 (1957), who suggest that pseudo-
molecules of pairs of electrons of opposite spin are formed, They
show if the size of the pseudomolecules is less than the average
distance between them, and if other conditions are fulfilled, the
system has properties similar to that of a charged Bose-Einstein
gas, including a Meissner effect and a critical temperature of
condensation. Our pairs are not localized in this sense, and our
transition is not analogous to a Bose-Einstein condensation.

~ C. J. Gorter and H. B. G. Casimir, Physik. Z. 35, 963 (1934);
Z. techn. Physik 15, 539 (1934).

'0 For discussions of evidence for an energy gap, see Blevins,
Gordy, and Fairbank, Phys. Rev. 100, 1215 (1955); Corak,
Goodman, Satterthwaite, and Wexler, Phys. Rev. 102, 656 (1956);
W. S. Corak and C. B.Satterthwaite, Phys. Rev. 102, 662 (1956);
R. E. Glover and M. Tinkharn, Phys. Rev. 104, 844 (1956), and
to be published.

"W. L. Ginsburg, Fortschr. Physik 1, 101 (1953); also see
reference 7.

~ N. Bernardes, Phys. Rev. 107, 354 (1957).

mrs =Ac'/4n. (1.2)

F.London has pointed out that (1.1) would follow from
quantum theory if the superconducting wave functions
are so rigid that they are not modified at all by the
application of a magnetic field. For an electron density
tr/cms, this approach gives h.=m/tre'.

On the basis of empirical evidence, Pippard' has
proposed a modification of the London equation in
which the current density at a point is given by an
integral of the vector potential over a region surround-

ing the point:

j(r) =-
4n.cAPs"

RLR A(r')$e ~1&&

E4
(1.3)

where R=r r' T—he ". coherence distance, "
$s, is of the

order of 10 ' cm in a pure metal. For a very slowly
varying A, the Pippard expression reduces to the
London form (1.1).

The present theory indicates that the Meissner eBect
is intimately related to the existence of an energy gap,
and we are led to a theory similar to, although not quite
the same as, that proposed by Pippard. Our theoretical
values for Ps are close to those derived empirically by
Pippard. We find that while the integrand is relatively
independent of temperature, the coeKcient in front of
the integral (in effect A) varies with T in such a way
as to account for the temperature variation of pene-
tration depth.

Our theory also accounts in a qualitative way for
those aspects of superconductivity associated with
infinite conductivity and a persistent current Qowing in
a ring. When there is a net current Qow, the paired
states (kryo, ksg) have a net momentum kr+ks ——q, where

q is the same for all virtual pairs. For each value of q,
there is a metastable state with a minimum in free
energy and a unique current density. Scattering of
individual electrons will not change the value of q
common to virtual pair states, and so can only produce
Quctuations about the current determined by q. Nearly
all Quctuations will increase the free energy; only those
which involve a majority of the electrons so as to change

"An excellent account may be found in F.London, SNperjluids
(John Wiley and Sons, Inc. , ¹wYork, 1954), Vol. 1.

theory may also be interpreted in terms of an energy-

gap model. ' Our theory yields an energy gap and specific
heat curve consistent with the experimental observa-
tions.

The best known of the phenomenological theories for
the electromagnetic properties is that of F. and H.
London. "With an appropriate choice of gauge for the
vector potential, A, the London equation for the
superconducting current density, j, may be written

-cAj= A.

The London penetration depth is given by:
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The coefficient 1V(hp)vo has been determined empiri-
cally for tin and aluminum.

Pippard based his Eq. (1.3) on Chambers' expression.
London's coefFicient, A., for T=O'K may be expressed
in the form:

A.
—'=-', e'E(Bp) vp.

Faber and Pippard suggest that if $o is written:

$0= akvo/kT. , (1.7)

the dimensionless constant a has approximately the

~Blatt, Butler, and Schafroth, Phys. Rev. 100, 481 (1955)
have introduced the concept of a "correlation length, " roughly
the distance over which the momenta of a pair of particles are
correlated. M. R. Schafroth, Phys. Rev. 100, 502 (1955), has
argued that there is a true Meissner eftect only if the correlation
length is electively infinite. In our theory, the correlation length
(not to be confused with Pippard's coherence distance, g0) is
most reasonably interpreted as the distance over which the
momentum of virtual pairs is the same. We believe that in this
sense, the correlation length is effectively infinite. The value of
q is exactly zero everywhere in a simply connected body in an
external field. When there is current Row, as in a torus, there is a
unique distribution of q values for minimum free energy.

2~ T. E. Faber and A. B. Pippard, Proc. Roy. Soc. (London)
A231, 53 (1955).

"See A. P. Pippard, Advances in Electronics (Academic Press,
Inc., New York, 1954), Vol. 6, p. 1.

the common g can decrease the free energy. These
latter are presumably extremely rare, so that the
metastable current carrying state can persist indefi-
nitely. '4

It has long been recognized that there is a law of
corresponding states for superconductors. The various
properties can be expressed approximatly in terms of a
small number of parameters. If the ratio of the elec-
tronic specific heat at T to that of the normal state at
T„C,(T)/C„(T,), is plotted on a reduced temperature
scale, t= T/T„most superconductors fall on nearly the
same curve. There are two parameters involved: (1)
the density of states in energy at the Fermi surface,
E(8p), determined from C„(T)=yT and (2) one which
depends on the phonon interaction, which can be esti-
mated from T.. A consequence of the similarity law is
that yT.'y V H02 (where V is the molar volume and
Ho the critical 6eld at T=O'K) is approximately the
same for most superconductors.

A third parameter, the average velocity, vo, of
electrons at the Fermi surface,

vp ——)r,
—'i Bh/r)ki p

is required for penetration phenomena. As pointed out
by Faber and Pippard, " this parameter is most con-
veniently determined from measurements of the anoma-
lous skin eRect in normal metals in the high-frequency
limit. The expression, as given by Chambers" for the
current density when the electric field varies over a
mean free path, l, may be written in the form:

e'E(8p)vo
I

R[R A(r')7e p"
dr'. (1.5)

2x'

II. THE GROUND STATE

The interaction which produces the energy difference
between the normal and superconducting phases in our
theory arises from the virtual exchange of phonons and
the screened Coulomb repulsion between electrons.
Other interactions, such as those giving rise to the
single-particle self-energies, are thought to be essentially
the same in both states, their eRects thus cancelling in
the energy difference. The problem is therefore one of
calculating the ground state and excited states of a
dense system of fermions interacting via two-body
potentials.

The Hamiltonian for the fermion system is most
conveniently expressed in terms of creation and
annihilation operators, based on the renormalized
Bloch states speci6ed by wave vector k and spin o,
which satisfy the usual Fermi commutation relations:

[ O1
Cktr&Ck'tr' g+=ukk ~@0 y

[~kn&ek'~')+ =0.

(2.1)

(2.2)

The single-particle number operator nk, is defined as

+ka ~ko' &ko- (2.3)

The Hamiltonian for the electrons may be expressed in

~7 From analysis of data on transmission of microwave and far
infrared radiation through superconducting Alms of tin and lead,
Glover and Tinkham (reference 20) 6nd a=0.27.

same value for all superconductors and they find it
equal to about 0.15 for Sn and Al. '~

Our theory is based on a rather idealized model in
which anisotropic eRects are neglected. It contains
three parameters, two corresponding to X(hp) and vo,

and one dependent on the electron-phonon interaction
which determines T,. The model appears to fit the law
of corresponding states about as well as real metals do

( 10% for most properties). We 6nd a relation corre-
sponding to (1.7) with a=0.18. It thus appears that
superconducting properties are not dependent on the
details of the band structure but only upon the gross
features.

Section II is concerned with the nature of the ground
state and the energy of excited states near T=O'K,
Sec. III with excited states and thermal properties,
Sec. IV with calculation of matrix elements for appli-
cation to perturbation theory expansions and transition
probabilities and Sec. V with electrodynamic and
penetration phenomenon. Some of the computational
details are given in Appendices.

We give a fairly complete account of the equilibrium
properties of our model, but nothing on transport or
boundary eRects. Starting from matrix elements of
single-particle scattering operators as given in Sec. IV,
it should not be difficult to determine transport proper-
ties in the superconducting state from the corresponding
properties of the normal state.
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for those matrix elements which are of importance in
the superconducting wave function:

2&„
I
M„ I

sc*(k'—st, a')c(k', o') c*(k+sc, o)c(k,o)
X

(et,- et,+„)'-(hto„)'

=Ho+Hi, (2.4)

where e~ is the Bloch energy measured relative to the
Fermi energy, hp. We denote by k&kp states above
the Fermi surface, by k&kp those below. The fourth
term on the right of (2.4) is IIs, the phonon interaction,
which comes from virtual exchange of phonons between
the electrons. The matrix element for phonon-electron
interaction, M„, calculated for the zero-point amplitude
of the lattice vibrations, is related to the v„ introduced
by Bardeen and Pines' by

Since I3f„I varies with isotopic mass in the same way
that to. does, the ratio I3E„I'/Ate„ is independent of
isotopic mass. We consider only the oQ'-diagonal inter-
action terms of H2, assuming that the diagonal terms
are taken into account by appropriate renormalization
of the Bloch energies, e~. The third term is the screened
Coulomb interaction.

Following Bardeen and Pines, " the phonons are
assumed to be decoupled from the electrons by a
renormalization procedure and their frequencies are
taken to be unaltered by the transition to the super-
conducting state. While this assumption is not strictly
valid, the shift in self-energy can be taken into account
after we have solved for the electronic part of the wave
function. This separation is possible because the pho-
nons depend only upon the average electron distribution
in momentum space and the wave function for electrons
at any temperature is formed from configurations with
essentially the same distribution of particles. The
Bloch energies are also assumed. to be constant; how-
ever, their shift with temperature could be treated as
in the phonon case.

The form of the phonon interaction shows that it is
attractive (negative) for excitation energies

I et, —et,+„I

(Lr, . Opposed to this is the repulsive Coulomb inter-
action, which may be expressed in a form similar to H2.
For free electrons in a system of unit volulne the
interaction in momentum space is e4's/rtItn the Bohm-
Pines theory, the long-wavelength components are
expressed in the form of plasma oscillations, so that ~

can be no smaller than minimum value ~., usually
slightly less than the radius of the Fermi surface, kp.
One could also take screening into account by a Fermi-
Thomas method, in which case ~' would be replaced by
K +K ', where tt, depends on, the electron density. Our
criterion for superconductivity is that the attractive
phonon interaction dominate the Coulomb interaction

(2.6)

The most important transitions are those for which
k&.« tstco„. A detailed discussion of the

criterion (2.6) has been given by Pines, "who shows
that it accounts in a reasonable way for the empirical
rules of Matthias" for the occurrence of superconduc-
tivity. Numerically, the criterion is not much diGerent
from one given earlier by Frohlich, "based on a di6'erent

principle.
To obtain the ground state function, we observe that

the interaction Hamiltonian connects a large number of
nearly degenerate occupation number conhgurations
with each other via nonzero matrix elements. If the
matrix elements were all negative in sign, one could
obtain a state with low energy by forming a linear
combination of the basis functions with expansion
coefIicients of the same sign. The magnitude of the
interaction energy obtained in this manner would be
approximately given by the number of con6gurations
which connect to a given typical configuration times an
average matrix element. This was demonstrated by one
of the authors" by solving a problem in which two
electrons with zero total momentum interact via con-
stant negative matrix elements in a small shell above
the Fermi surface. It was shown that the ground state
of this system is separated from the continuum by a
volume independent energy. This type of coherent
mixing of Bloch states produces a state with qualita-
tively diGerent properties from the original states.

In the actual problem, the interaction which takes a
pair from (kia i,ksas) to (ki'o. i,ks'a s) contains the
operators,

c*(ks',os)c(ks&~s)c (ki', oi)c(ki,oi). (2.7)

Conservation of momentum requires that

k,+ks ——ki'+ks'. (2 g)

"D. Pines (to be published).
u B. Matthias, Progress iu I.oro TemPerature Physics (North-

Holland Publishing Company, Amsterdam, 1957), Vol. 2.
so L. N. Cooper, Phys. Rev. 104, 1189 (1956).

Because of Fermi-Dirac statistics, matrix elements of
(2.7) between arbitrary many electron configurations
alternate in sign so that if the configurations occur in
the ground state with roughly equal weight, the net
interaction energy would be small. We can, however,
produce a coherent low state by choosing a subset of
configurations between which the matrix elements are
negative. Such a subset can be formed. by those con-
6gurations in which the Bloch states are occupied in
pairs, (kio i,ksas); that is, if one member of the pair is
occupied in any configuration in the subset, the other
is also. Since the interaction conserves momentum, a
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maximum number of matrix elements will be obtained
if all pairs have the same net momentum, k~+k2 ——q.
It is further desirable to take pairs of opposite spin,
because exchange terms reduce the interaction for
parallel spins. The best choice for q for the ground state
pairing is q=0, (kg, —kg).

We start then by considering a reduced problem in
which we include only configurations in which the states
are occupied in pairs such that if kg is occupied so is
—kg. A pair is designated by the wave vector k,
independent of spin. Creation and annihilation opera-
tors, for pairs may be defined in terms of the single-
particle operators as follows:

bk =C k/Ckf)

b

(2.9)

(2.10)

These operators satisfy the commutation relations

(2.11)

(2.12)

(2.13)

where e&, is given by (2.3). While the commutation
relation (2.12) is the same as for bosons, the commu-
tators (2.11) and (2.13) are distinctly different from
those for Bose particles. The factors (1—n~t —I ~g)
and (1—Bqq) arise from the effect of the exclusion
principle on the single particles.

That part of the Hamiltonian which connects pairs
with zero net momentum may be derived from the
Hamiltonian (2.4) and expressed in terms of the b's.

Measuring the energy relative to the Fermi sea, we
obtain:

Excited states are treated in much the same way as
the ground state. One must distinguish between singly
excited particles, in which one and only one of a pair
(kg, —kg) is occupied, and excited or "real" pair states.
We treat singly excited particles in the Bloch scheme,
as in the normal metal. They contribute a negligible
amount to the interaction energy directly, but reduce
the amount of phase space available for real and virtual
pairs. Thus the interaction portion of II„~ is modified

by deleting from the sums over k and k' all singly
occupied states, and the remainder is used to determine
the interaction energy associated with the pairs.

One might expect to get some interaction energy
from singly occupied states by associating them in
various@pairs with q&0. However, an appreciable
energy is obtained only if a finite fraction of the pairs
have the same q, and this will not be true for randomly
excited particles. States with a net current Row can be
obtained by taking a pairing (k&g,k2)), with k&+k2 ——q,
and g the same for all virtual pairs.

The most general wave function satisfying the
pairing condition (kg, —kg) is of the form

where the sum extends over all distinct pair configura-
tions. To construct our ground state function we make
a Hartree-like approximation in which the probability
that a specific configuration of pairs occurs in the wave
function is given by a product of occupancy proba-
bilities for the individual pair states. If for the moment
we relax the requirement that the wave function
describes a system with a fixed number of particles,
then a function having this Hartree-like property is

(2.16)

kk'

We have defined the interaction terms with a negative
sign so that V». will be predominantly positive for a
superconductor. There are many other terms in the
complete interaction which connect pairs with total
momentum q&0. These have little eGect on the energy,
and can be treated as a perturbation. Although the
interaction terms kept in H„& may appear to have a
negligible weight, it is this part which contributes
overwhelmingly to the interaction energy.

We have used a Hartree-like method to determine
the expansion coefficients, which appears to. give an
excellent approximation, and may, indeed, even be
correct in the limit of a large number of particles. "
(See Appendix A.)

"Since (2.14) is quadratic in the b's, one might hope to get an
exact solution for the ground state by an appropriate rede6nition
of the single-particle states, as can be done for either Fermi-Dirac
or Einstein-Bose statistics. Our pairs obey neither of these, and
no such simple solution appears possible.

where Co is the vacuum. It follows from (2.16) that the
probability of the e states k& k„being occupied is

h(k~) . .h(k„), and since n is unrestricted we see that
is closely related to the intermediate coupling

approximation.
For any specified wave vector k', it is convenient to

decompose + into two components, in one of which, q ~,

the pair state designated by k' is certainly occupied
and the other, q 0, for which it is empty:

&=hg ling+(1 —hg)iso (2.17)

The coeKcient hq is the probability that state k is
occupied and the q

's are the normalized functions:

pg=bg *go=by * g [(1—hg)&+kg&by*]C0. (2.18)
k(~k~)

In the limit of a large system, the weights of states
with diBerent total numbers of pairs in 4 will be sharply
peaked about the average number, X, which will be
dependent on the choice of the h's. We take for our
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ground state function, %~, the projection of 4 onto the
space of exactly X pairs. "This function may also be
decomposed as in (2.17), but since y~i and qzo now
have the same number of pairs, y» is not equal to
5k' (pjl70. To decompose 4&, we suppose that k space is
divided into elements, hk, with Kk available states of
which in a typical configuration mk are occupied by
pairs. The mk's are restricted so that the total number
of pairs is specified:

interaction energies, a further decomposition into states
in which occupancy of two pair states, k and k', is
specified is often convenient. Thus we may write:

+N (~~ )*0%11++(1 ~ ))'PN10+L(1 h)h ) PN01

+l (1—h) (1—h ))*q'zroo, (2.25)

where the 6rst index gives the occupancy of k and the
second of k'. It follows from the definition of the
functions that

p mk ——X= p (mk)A' (2.19)
~k' ~k +N 1.0 PN01 ~ (2.26)

all hk all bk

The total weight of a given distribution of mk s in%' is

Thus the diagonal matrix element of bk *bk is

(@~lbk.*bkl@k) =I hk(1 —hk)hk (1—hk. ))l. (2.27)

W~ = Q W(mk),
(Zmk-Ã)

(2.21)

where the sum is over-all distributions of the mk's

subject to the conditions (2.19).
The decomposition of %~ into a part in which a

specified pair state k' is occupied and one where it is
not can be carried out by calculating from 4~ the total
weight, W~, k, corresponding to k' occupied with the
restriction p mk ——E. When k' is occupied, there are
Kk —1 other states in the cell over which the remaining
mk —1 particles can be distributed and this cell will

contribute a factor

(Kk —1)!hk k'(1 —hk )
(2.22)

(mk —1)!(Xk —mk )!
to the weight for a given distribution of nzk's. It follows
that

W(mk)= II Ik"k(1—hk) ™(2.20)
~&& &k mk!(Kk mk—)!

and the total weight of functions with specified X is

Wo = (+0,&..a+0), (2.28)

where %0 is the E-pair function %~, for the ground
state. The Bloch energies, ek, are measured with respect
to the Fermi energy and

—Vkk. ——(—k'g, k'g
l
Efr

l

—kg, kt)
+ (k'g, —k'&I &r

I
k'4 kg). (2.29)

The decomposition (2.23) leads to the Bloch energy
contribution to Wo of the form

WEE ——2 Q ~khk+2 Q l &kl (1—hk), (2.30)

where "KE" stands for kinetic energy. The matrix
elements of the interaction term in P„& are given by
(2.27) and the interaction energy is

Wr= —Q Vkk L&k(1—kk)hk. (1—hk. ))'*, (2.31)

Ground-State Energy

If the wave function (2.24) is used as a variational
approximation to the true ground-state function, the
ground-state energy relative to the energy of the Fermi
sea is given by

mkl
W~, k = Q W(mk)=hk Wx

(Znak Ã) kI
(2.23)

and therefore

+~= &k 'q Xi+(1—&k )'*V ~o (2.24)

where q ~~ and cp~o are normalized functions.
For purposes of calculating matrix elements and

~ It is easily seen that 4'& has zero total spin, corresponding to
a singlet state.

The last equality holds except for terms which vanish
in the limit of a large system because the state vector
4' gives a probability (mk /Kk )A, =hk that a given state
in hk' is occupied. Now the weights for different
numbers of pairs in 4' are strongly peaked about the
most probable number S and therefore the average
over distributions with exactly F pairs is essentially
equal to the average over all distributions. Since all
terms in the wave function come in with a positive
sign, it follows that the normalized 4& may be decom-
posed in the form

Wo WKE+Wr 2 p Ekkk+2 p l fkl (1—kk)

Lhk(1 —hk))' Ek~ Vkk'I hk~(1 —hk~))&

26k
(2.33)

We shall neglect anisotropic effects and assume for
simplicity that the matrix element V» can be replaced
by a constant average matrix element,

V=(V .)„„, (2.34)

for pairs making transitions in the region —Ace &e &Ace

—P Vkk Lhk(1 —hk) hk. (1—hk. ))&. (2.32)
k, k'

By minimizing S'0 with respect to h&, we are led to
an integral equation determining the distribution
function:
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Using the relations (2.40), we find that the difference
in energy between the superconducting and normal
states at the absolute zero becomes

and by zero outside this region, where ~ is the average
phonon frequency. This cutoff corresponds to forming
our wave function from states in the region where the
interaction is expected to be attractive and not mixing
in states outside this region. The average is primarily
one over directions of k and k since the interaction is
insensitive to the excitation energy for those transitions
of importance in describing the guperconducing phase.
The average may also be viewed as choosing h to be a
function of energy alone, thus neglecting the details of
band structure. The laws of similarity indicate this to
be a reasonable assumption and the good agreement of
our theory with a wide class of superconductors supports
this view.

Introduction of the average matrix element into
(2.33) leads to

—2%(0) (Ace)'

~[2/~(o) v]

(2.42)

If there is a net negative interaction on the average,
no matter how weak, there exists a coherent state which
is lower in energy. than the normal state. Thus our
criterion for superconductivity is that V&0, as given
in (2.6).

For excitations which are small compared to ken, the
phonon interaction is essentially independent of isotopic
mass and therefore the total mass dependence of 5'o
comes from (Ru)2, in agreement with the isotope effect.
Empirically, W2 is of the order of 1V(0)(hT,)2 and in
general hT, is much less than her. According to (2.42),
this will occur if X(0)V(1, that is, the weak coupling
limit.

It should be noted that the ground state energy can-
not be obtained in any Gnite-order perturbation theory, .
In the strong-coupling limit, (2.42) gives the correct
result, —X(0) (her)2V, for the average interaction
approximation and it is possible that our solution is
accurate in the statistical limit over the entire range
of coupling. (See Appendix A.)

In the weak-coupling limit, the energy becomes

(2.35)
2 (62 +6P )2.

and

(2.36)9,(1—h&)1l=
2(e22+ e02) &

where
(2.37)

the sum extending over states within the range
~

~k~(~. If (2.36) and (2.37) are combined, one obtains a
condition on eo.

(2.38)
V 2: 2(eg2+2p2)~

Wo ———21V(0) (M)2 exp— (2.43)
E(0)VReplacing the sum by an integral and recalling that

V=O for
~

e2~ )fur, we may replace this condition by

1V(0)V "0 (22+ eo2) '
WP =—-'20.2/E(0), (2.44)

which may be expressed in terms of the number of
electrons, e„ in pairs virtually excited above the Fermi

(2 39) surface as

Solving for eo, we obtain

eo =Ace sinh
E(0)V

'

(2.40)

&o

where S(0) is the density of Bloch states of one spin

per unit energy at the Fermi surface.
The ground state energy is obtained by combining

the expressions for h2 and e2, (2.35), (2.36), and (2.37),
with (2.32). We find

where

22, =2/(0)A(a exp
X(0)V

(2.45)

In this form, the cooperative nature of the ground
state is evident. Using the empirical order of magnitude
relation between 5'o and kT„we might estimate

kT,~her exp ——
E(0)V

(2.46)

In the next chapter we shall see that the explicit
calculation of kT, from the free energy as a function of
temperature leads to nearly this result.

where we have used the fact that $1—h( —2))=h(e),
that is, the distribution function is symmetric in elec-
trons and holes with respect to the Fermi surface.

Energy gay at T=O'K

An important feature of the reduced Hamiltonian is
that there are no excitations from the ground state,
g,nalogous to single-particle excitations of the Bloch
theory, with vanishing excitation energy. This is easily
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which is orthogonal to the ground state function and
corresponds to breaking up a pair in k', the spin-up
member going to k"g. The projection of ~.„.onto the
space with Ã pairs is also orthogonal to Cp. The
decomposition of 0'~, , is the same as that of 4p, except
that —k'& and k"p are definitely known to be occupied
and k'f and —k"g are unoccupied. This leads to the
excitation energy

Wk, » —Wo=ok'(1 —2h»')+ok'(1 —2h» )

+2V+[h (1—h)j'{[h (1—h )j'
+[h,-(1—h, -))-:), (Z.4S)

the decrease in interaction energy arising from the fact
that pairs cannot make transitions into or out of pair
states k' and k" in the excited function because these
states are occupied by single particles. Combining
(2.35), (2.36), and (2.37) with (2.48), we find

(1 1

~k', k- —~o= + +oo'~ +
Ek' Ek" 'Ek' Ek"~

=Ek+Ek", (2.49)'

where
(o»2+oo2) $ (2.50)

When ok—+0, then Ek +Go and (2.49) shows that the
minimum excitation energy is 2ep. These single-particle-
like excitations have the new dispersion law (2.50)
which goes over to the normal law when 6k))6p.

To obtain a complete set of excitations, we must
include excited state pair functions generated by

[(1—h»)~b»* —hk&], (2.51)

which by construction are orthogonal to the ground
state pair functions generated by

[(1—h»)*'+h»'bk*j (2.52)

The decomposition of an excited state with an excited
pair in k' and a ground pair in k would be

+k' [hk(1 hk')j'&pll [hkhk'filo
+[(1—hk)(1 —hk)g'*poi [(1 hk)hkj*poo, (2.53)

where the functions y are normalized and the second
script denotes the occupancy of k'. Taking the expec-
tation value of H„q with respect to (2.53), we find the
energy to form an excited pair in state k' is:

~k, —g o ——2ok (1—2hk)
+4' Z»[hk(1 —h»)h'(1 —h') j'=2E'. (254)

Again the minimum energy required to form an exci-
tation is 2ep and an energy gap of width 26p appears in

seen by considering a function

4.*.={ p [(1—hk)&+hkbk jjc ki ck 2*Co) (2.47)
krak', k"

the excitation spectrum in a natural way. It follows
that in general the energy diRerence between two states,
1. and 2, is given by the difference in the sums of the
excited-particle energies,

~i—~2=22 E»—+2 Ek, (2.55)

and it is unnecessary to distinguish between single
particles and two members of an excited pair in calcu-
lating the sums.

Collective excitations corresponding to long-range
density Quctuations are suppressed by the subsidiary
condition on the wave function resulting from the
collective description of the electron-ion interaction. "
The eRect of the terms neglected in the Hamiltonian,
H—H„d=H', can be estimated. by a perturbation
expansion of H in eigenfunctions of H„g. This expan-
sion is carried out to second order in Appendix A and
it is concluded that H' will contribute little to the
condensation energy. The shift in the zero-point energy
of the lattice associated with the transition at the
absolute zero is estimated in Appendix 8 and it is
shown that this eRect contributes a small correction to
5'p. The electron self-energy shift has not been calcu-
lated at the present time; however, it is also believed
that the correction is small.

III. EXCITED STATES

An excited state of the system will be formed by
specifying the set of states, S, which are occupied by
single particles and the set of states, (P, occupied by
excited pairs. The rest of the states, g, will be available
for occupation by ground pairs. The term "single-
particle" occupation means that either kg or —kg is
occupied by an electron, but not both. "Excited pair"
and "ground pair" occupation refers to pairs which are
in functions generated by operators of the form (2.51)
and (2.52) respectively. Wave functions with diBerent
distributions of single particles and excited pairs are
orthogonal to each other and the totality of such
functions constitutes a complete set of excited states
which are in one-to-one correspondence with the
Bloch-type excitations in the normal metal.

The energy of the excited states will be evaluated by
using the reduced Hamiltonian plus the Bloch energy
for single particles:

~.= 2 ok"k.+ ~ ~"~(1-N».)
k&k~, o. k &kg', 0

—Z'kkb»*bk, (3.1)
k, k'

where the second term gives the Bloch energy of the
holes and the energies ek are measured relative to the
Fermi energy. Since HI contains only terms for transi-
tions by ground pairs and excited pairs, the single
particles contribute only to the Bloch energy and hence
they are treated as in the Bloch scheme.

The equilibrium condition of the system at a speci6ed
temperature will be determined by minimizing the free
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ckr (|0(' ' 'Ok' ' ') (3 5)

where the p's are normalized functions with ik repre-
senting pair state k being occupied and Ok unoccupied.

To determine the distribution functions, we need the
free energy

Ii = O' —TS, (3.6)

where S' is the energy calculated by an ensemble
average over the wave functions of the form (3.2) and
S is the entropy.

To enumerate the systems in the ensemble we divide
h-space into cells Ak containing Kk pair states as before.
Let there be Sk single particles and I'k excited pairs in

hk, with the rest of the Kk states being occupied by
ground pairs. The probability that either kg or —kg
is occupied by a single particle is sk=Sk/Xk, while the
probability for an excited pair in state k is pk ——Pk/Xk
and therefore the probability for a ground pair is

(1—sk —pk). Above the Fermi surface, h& —,
' and s

energy with respect to the distribution function for
excited particles, f, and ground pairs, h.

It turns out that hk is a function of temperature and
therefore excited and ground pairs are not necessarily
orthogonal to each other at different temperatures,
although the excited states form a complete orthonormal
set at each temperature. The most probable distribution
of single particles also varies with temperature and
thus the great majority of states contributing to the
free energy at different temperatures will be orthogonal
in any event. The situation is similar to taking the
lattice constant temperature dependent as a result of
thermal expansion. This freedom in choosing hk allows

us to work in that representation which minimizes the
free energy at the specified temperature.

A typical excited state wave function can be written
as the projection of

e,„,= g [(1—hk)i+hklbk*j g [(1—hk)*bk*
k(g) k'((p)

—h''*j II ~(')*C'o, (3 2)
k"(s)

onto the space with X pairs, where g, (P, and g specify
the states occupied by ground pairs, excited pairs, and
single particles respectively and c~k")* denotes either
k"f or —k"g is included in the product. For any speci-
fied k, this function can be decomposed into a portion
with k occupied and a portion with k unoccupied. The
decompositions for the three cases in which k is in the
sets g, (P, and g are

Ground:

e=hk Pi( .1' )+(1—hk)*~0( 0' ), (3.3)

Excited:
4'= (1—hk) 'yi( 1k )—hk*'q P( Ok. ), (3.4)

Single in kf:

becomes

wxE=g
I ckl [sk/2pk+2(1 —sk —2pk)hk(l ekl)g, (3.9)

where we have carried out the spin sum.
To calculate the matrix elements of the pair inter-

action operator p Vkk bk*bk, we assume that Vkk
varies continuously with k and k' so that Vkk may be
considered to be the same for all transitions from states
in Ak to states in Ak'. I.et k and k' represent two
specified wave vectors in Ak and Ak'. To obtain non-
vanishing matrix elements for bk *bk, these states must
be occupied by either excited (—) or ground (+) pairs,
giving the four possibilities + +, ——,+ —,—+
for k and k', respectively. For any one of these cases,
a typical wave function may be decomposed into com-
ponents in which the pair occupancy of k and k' is
specified:

+k, k' all'Pll(' ' ' 1k' ' ' 1k' ' ' ')
+allo &p10(' ' 1k' ' Ok' ' )
+&01&P01(' ' 'Ok' ' '1k'' ' )

+&00@00(' 'Ok ' 'Ok' ' ' '), (3.10)

where the q's are normalized functions. Table I gives
the values of the o.'s for the different cases along with
the fractional number of configurations for which they
apply.

The diagonal elements of bk *bk are given by n&po, py

in each case. If we sum these, weighted according to the
probability they occur in the ensemble, we obtain

[h (1—h) h'(1 —h') 7:( (1—s—p) (1—s' —p')
+pp' —(1—s—p) p' —p(1 —s' —p') }

= [h(1—h)h'(1 —h') j'*

X ( (1—s —2p) (1—s' —2p') }. (3.11)

Introducing these matrix elements into the ensemble
average of the interaction Hamiltonian, we find

Wr ———Q Vkk [hk(1 —hk)hk (1—hk )j'
k, k'

X f (1—sk —2pk) (1—sk —2pk )}. (3.12)

and p refer to excited electrons; below the Fermi
surface, h) —', and s and p refer to holes.

The diagonal element of nk follows immediately
from (3.3), (3.4), and (3.5). Including the factor giving
fractional number of configurations for which each
decomposition applies, we have

(g I
~"

I g) = (1/2) sk+pk(1 —hk)

+ (1—sk —pk)hk, e)0;
(3.7)

(lb I
1—ek.

I p) = (1/2) sk+pkhk

+ (1—sk —pk) (1—hk), e &0.

Upon using (3.7) and the fact that 1—hk( —e) =hk(&),
the Bloch energy contribution to 5',

(Wl & ~k~"+ & I "l(1—~')lk) (3 g)
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TABLE 1. Coefficients for the decomposition of + according to Eq. (3.10).

Wave function
k gt Fractional No. of cases

(1—s—P) (1—~' —P')
pp'
(& —~—P)P'
p(& —~' —p')

[hh'j&

f(1—h) (1—h') ]&

fh(1 —h') j&

f{1—h)h'g&

fh(1 —h') g&

—f(1—h) h'j&
—fhh'g&

f{1—h)(1 —h')g&

f(1—h) h']&
—fh(1 —h') g&

f (1—h) (1—h') j&
—fhh'g&

f (1—h) (1—h')]&
fhh'j&
—f(1—h)h'g&
—fh(1 —h') j'

It should be noted that the Bloch energy (3.9) and
the interaction energy (3.12) depend on (s+2p) or the
total occupancy probability. The energy does not
depend upon the relative probability for single-particle
and excited-pair occupation. Thus one may use a
distribution function f which gives the over-all prob-
ability of occupancy, where

of the form
hk ———,'I 1—(ck/Ek) j, (3.19)

Ek =+(ek'+ ep') ', (3.21)

jhk (1—hk) )*= cp/E k.— (3.20)

The energy Ek, a positive definite quantity, is defined as

(3 13)
where

Sk ——2fk(1 —fk),

P) =fk',
and

which follows from the fact that sk is the probability
that either kg is occupied and —kg is empty or the
reverse and pk is the probability that both kt and —k&

are occupied. The free energy can be minimized directly
with respect to hk, pk, and sk without introducing fk
and one indeed finds that (3.13) and (3.14) hold.

Since the excited particles are specified independ-
ently for each system in the ensemble, the usual
expression for the entropy in terms of f may be used:

ep= V Zk'I hk'(1 —hk )3~(1—2fk ). (3.22)

It will turn out that 2~0 is the magnitude of the energy
gap in the single-particle density of states and therefore
the distribution of ground pairs is determined by the
magnitude of the gap at that temperature.

When we minimize Ii with respect to fk, we find that

2ek(1 —2hk)+4 /k~ Vkk Lhk~(1 —hkI)hk(1 —hk)$'

X (1—2fk )+2kT ln(fk/(1 —fk)) =0, (3.23)

and using (3.19) through (3.22), we find that

—T5=2kT pk {fk lnfk+(1 —fk) ln(1 —fk)). (3.15) —ln(fk/(1 —fk)) =p + =pEk,
-+k ~k-

(3.24)

(3.25)
F=2 ZIekII fk+(1—2f )h (I ski)j

Minimization of the Free Energy where p=i/kT and Ek is a positive quantity. The
If the expressions (3.13) and (3.14) are introduced

into (3.9) and (3.12), the free energy becomes

or

(1—2hk)
X =0, (3.17)

I hk(1 —hk) j&

—P Vkk Lhk(1 —hk)hk (1—hk)j~
kl

X((1—2fk)(1 —2fk ))—TS. (3.16)

When we minimize Ii with respect to hk, we find that

2ek —Q Vkkjphk~(1 —hk~) ji(1—2fk~)

Thus the single particles and excited pairs describe a
set of independent fermions with the modified dispersion
law (3.21). For k) kp, fk specifies electron occupation
while for k(ki, fk specifies hole occupation. These
electrons and holes are identified with the normal
component of the two-Quid model.

When ok~0+, then Ek~eo for the electron and when
ek—+0, then Ek—&so for the hole or the corresponding
electron energy —+—eo. Thus the new density of states
has an energy gap of magnitude 2&0 centered about the
Fermi energy. The modified density of states is given by

Lh, (1—h, ))&

1—2hk

Vkk Lhk (1—hk )j&(1—2fk )
(3.18)

26k

dN(E) dlV(e) de

dIf d& dE
=lid(0)

(E'—ep')'*
(3.26)

where the energy ck is measured relative to the Fermi
energy and ek(0 for k .kp. Assuming as before that
the interaction can be replaced by a constant average
matrix element —V, defined by (2.34) for IckI (hcp
and by zero outside this region, it follows that hk is again

which is singular at the edges of the gap, E=eo. The
total number of states is of course unaltered by the
interaction.

If the distribution functions (3.19) and. (3.25) are
introduced, the condition determining the energy gap
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T„ the gap may be expressed as

pp= 3.2kT,$1—(T/T, ))&, (3.31)

0.4-

. 0
l

O.P„ 0.4 0.6 0.8 f.0

FIG. i. Ratio of the energy gap for single-particle-like
excitations to the gap at T=O'K vs temperature.

(3.22) becomes (dividing by pp)

1 p"" d~

N(0)V "p (p'+pp')~
tanh$-,'P(p'+ pp') &$, (3.27)

where we have replaced the sum by an integral and used
the fact that the distribution functions are symmetric
in holes and electrons with respect to the Fermi energy.
The transition temperature, T„is dedned as the bound-

ary of the region beyond which there is no real, positive
ep which satisfies (3.27). Above T. therefore, cp=0 and

f(E~) becomes f(py), so that the metal returns to the
normal state. Below T, the solution of (3.27), pp&0,
minimizes the free energy and we have the supercon-
ducting phase. Thus (3.26) can be used to determine
the critical temperature and we And

Critical Field and Specific Heat

The critical field for a bulk specimen of unit volume
is given by

HP /8m =F —F„ (3.32)

where Ii„ is the free energy of the normal state:

4p

= —-'pn N(0) (kT)'. (3.33)

With the aid of (3.25) the entropy in the supercon-
ducting state, (3.15) may be expressed as

which has the form suggested by Buckingham. "
It can be seen from the distribution functions that

our theory goes over into the Bloch scheme above the
transition temperature. As T~T„Eq~~ p~~, and kq
vanishes for k&kp and is unity for k(k&. According
to (3.4) the excited-pair function speci6es complete
electron occupancy for k& k& and complete hole occu-
pancy for k &k p in this case. Thus, in the normal state,
the ground pairs vanish above the Fermi surface and
form the Fermi sea below, while the single particles and
excited pairs combine to describe excited electrons for
k& k p and excited holes for k &kp.

ol

r ""de—tanh (pP,p),
N(0) V "p e

(3.28)
T$=4kT P Lln(1+e ~e")+PEpfp]. (3.34)

k)kp

Replacing the sum by an integral and performing a
partial integration, we find

kT, = 1.14k' exp—
N(0) V

(3.29)

TS=4N(0) dp +E f(PE), — (3.35)
as long as kT,(&ken, which corresponds to the weak-

coupling case discussed in Sec. II. The transition
temperature is proportional to Ace, which is consistent
with the isotope eHect. The small magnitude of T,
compared to the Debye temperature is presumably due
to the cancellation of the phonon interaction and the
screened Coulomb interaction for transitions of im-

portance in describing the superconducting state, and
the resulting eGect of the exponential.

The transition temperature is a strong function of
the -electron concentration since the density of states
enters exponentially. It should be possible to make
estimates of the change in transition temperature with

pressure, alloying, etc. , from (3.29).
A plot of the energy gap as a function of temperature

is given in Fig. 1.The ratio of the energy gap at T=0'K
to kT, is given by combining (2.36) and (3.28):

2pp/kT. =3 50. .(3.30)

From the law of corresponding states, this ratio is
predicted to be the same for all superconductors. Near

where the upper limit has been extended to infinity
because f(PE) decreases rapidly for Pc)1. If (3.34)
and (3.16) are combined with the distribution functions
(3.19) and (3.25), the free energy becomes

F,= —4N (0) deEf (PE)

p
fghl t g2 '

~ 2

+2N(0) de p ————, (3.36)
~p ~ E V

which with the aid of (3.27) may be expressed as

"o

—N(0) (A(u)' 1+ i
—

i
—1 . (3.37)

f )
"M. J. Buckingham, Phys. Rev. 101, 1431 {1956).
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The critical field is given by combining (3.31), (3.32), T/T,«1 we have the relation
and (3.37): H '= H '[1—-'m'(kT/» )'j (3.43)
gy 2 (»s)s & m'

=X(0)(A(o)' 1+ i
—

i
—1 ——E(0)(kT)'

(kM) 3

ol'

H —HoL1 —1 07(T/T.)'j (3.44)

2»s+»es
X 1—P' d» —f(P&) (3 3g)

and
C. =pT(ergs/'C cm'),

y =-'s~'X(0) k'.

(3.41)

(3.42)

The Gorter-Casimir model gives the value of 0.159 for
the ratio (3.40). The scatter of experimental data is
too great to choose one value over the other at the
present time.

Near T=O, the gap is practically independent of
temperature and large compared to kT, and hence for

A plot of the critical field as a function of (T/T, )' is

given in Fig. 2. The ctxrve agrees fairly well with the
1—(T/T, )' law of the Gorter-Casimir two-fluid model, "
the maximum deviation being about four percent.
There is good experimental support for a similar
deviation in vanadium, thallium, indium, and tin; how-

ever, our deviation appears to be somewhat too large to
Gt the experimental results.

The critical field at T=O is

Hs ——L4nX(0) j-*»s(0)=1.75L4trE(0))lkT,
&

(3.39)

where 2»s(0) is the energy gap at T=O and the density
of Bloch states X(0) is taken for a system of unit
volume.

A law of corresponding states follows from (3.39) and
may be expressed as

yT.'/Hp' ——-'emLkT. /»e(0))'=0. 170, (3.40)

where the electronic specific heat in the normal state
is given by

p d»e'
C.,=4kP' Q fk(1 —fk) Zk'+-

k)ky 2 dP
(3.46)

The expression for C„ is simply interpreted as the

specific heat due to electrons and holes with the
modified spectrum (3.21) plus the change in conden-
sation energy with temperature.

At the transition temperature, the energy gap van-
ishes and the jump in specific heat associated with the
second order transition is given by

dE0
(C..—C.„)

~
r, =2kPs Q f,„(1-f,„)k)kp, dP r~

=klV(0)P. ' (3.47)

(3.48)

The derivative d»s'/dp can be obtained from the
relation between»e and T, (3.27). After some calculation
we find

10.2

dp &. p'
(3.49)

and the jump in specilc heat becomes

This approximation corresponds to neglecting the free-
energy change of the superconducting state, the total
eGect coming from P„.

The electronic specific heat is most readily obtained
from the entropy, (3.34):

dS dS dfk
C„=T = —P = —4kP Q P&k, (345)dP: k)kk dP

C„—yT,

PTc Tc

=1.52. (3.50)

(Hg)

The Gorter-Casimir model gives 2.00 and the Koppe
theory' gives 1.71 for this ratio. The experimental data
in general range between our value and 2.00.

The initial slope of the critical-field curve at the
transition temperature is given by the thermodynamic
relation

.2 .3 .O .5 .6 .7 + .8 1O

(T/T )

T. pdH, p'

4nl dT& r,
=(C.—C )

TC

(3.51)

FIG. 2. Ratio of the critical 6eld to its value at T O'K vs
(T/T, )'. The upper curve is the 1—(T/T, )' law of the Gorter-
Casimir theory and the lower curve is the law predicted by the
theory in the weak-coupling limit. Experimental values generally
lie between the two curves.

= 19.4,

With use of (3.47) this becomes

1 (dH. p '

y&dT) r,
(3.52)
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creation and destruction operators,

V= P Hj = P 8k~k'~'Ck'~' Ck~&

where

+kirk'n'
J

4'k'~' +j4'knrzrj

(4.1)

(4.2)

I.0-

0.6-

0,2-

0 O.I 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

Fio. 3. Ratio of the electronic speci6c heat to its value in the
normal state at T, vs T'/'1, for the Gorter-Casimir theory and for
the present theory. Experimental values for tin are shown for
comparison. Rote added se proof. The pl—otted theoretical curve
is incorrect very near T„' the intercept at T, should be 2.52.

or with (3.39),
1.82HO

(3.53)

When Pes))1, the specific heat can be expressed in
the form

C., 3 ( eo )'(T~)'
I I

—
I I 3&i(P«)+&s(P«)3

yT, 2sr KIT,) E T)
~g 5s 1.44Telr (3 5—4)

where E„is the modified Bessel function of the second
kind.

The ratio C„/(yT, ) is plotted in Fig. 3 from (3.46)
and compared with the T' law and the experimental
values for tin. The agreement is rather good except
near T. where our specific heat is somewhat too small.
The logarithm of the same ratio is plotted in Fig. 4 to
bring out the experimental deviation from the T' law.
The recent work of Goodman et al.2o shows that the
data for tin and vanadium 6t the law:

C„/(yT, ) = ae 'r'r, —(3.55)

is the matrix element for scattering of a single electron
from ko to k'o'. ln this section we shall determine
matrix elements of U between two of our many-particle
excited-state wave functions for a superconductor and
give tables which should be useful for application to
perturbation theory and transport problems. We 6rst
give a brief review of the corresponding problems for
the normal state.

The matrix element of c~ *cj„between two normal
state configurations is zero unless the occupation num-
bers differ only in transfer of an electron from ka in the
initial to k'o in the final configuration, in which case it
is unity. If one wishes to calculate the probability that
at temperature T an electron be scattered from a state
of spin o in an element Ak to one of spin o' in Ak', one
must multiply the usual single-particle expression by
f(1 f'), the p—robability that ko be occupied and k'o.'

unoccupied in a typical initial configuration. A similar
factor occurs in the second-order perturbation theory
expansion of V:

I &"."I'f(&—f')
(4.3)

If H; is independent of spin, 0'=0. and the sum reduces
to

(4.4)
k, k' ~ e e)—

IO

with high accuracy for /T&T1. 4where a=9.10 and
b=1.50. These values are in good agreement with our
results in this region, (3.54).

Thus we see that our theory predicts the thermo-
dynamic properties of a superconductor quite accu-
rately and in particular gives an exponential speci6c
heat for T/T, «1 and explicitly exhibits a second-order
phase transition in the absence of a magnetic 6eld.

IV. CALCULATION OF MATRIX ELEMENTS

Ces
~Tc

.05

I k5 2 0 2.5 3.0 3S 4.0
T/T

There are many problems for which one would like
to determine matrix elements of a single-particle scat-
tering operator of the form U=Q, H, , where H;
involves only the coordinates of particle j. In terms of

FIG. 4. A logarithmic plot of the ratio of the electronic speci6c
heat to its value in the normal state at T, vs 7,/2'. The simple
exponential 6ts the experimental data for tin and vanadium well
for 7,/1') t.4.
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TABLE II. Matrix elements of single-particle scattering operator.

Wave functions'
Initial, O', Final, 4'I Ground (+) Energy

or excited (—) diff'erence
—k$), —k'$) —k$), —k'$) k k' W;—Wy

Probability of
initial state

Matrix elements
Cksg Ckt Ol C-k$ C k $ 01'

C ksg Ckg —C kg Ckst

XO 00
XO XX

XX OX
00 OX

(a)

(b)

00 XO
XX XO

OX XX
OX 00

E—E'
E'—E
E+E

—(g+gi)

E/

(E+E )
E+E'

ss(1-s'-P')
p/

1SP/

—,'s(1 —s' —p')

-',s'(1-s-p)

—,'s'(1-s- p)
XS/p

L(1—h) (1—h') g&

(hk') &

—P(1—h) k']&
—Lh(1 —h') g&

(hh')&

L(1-h) (1—h') g&

Lh(1 —h') g&

P(1—h) h'j&

—(hh') &

—L(1—h) (1—h') )&
—Lh(1 —h') $&

—L(1—h) h')&

—((1—h) (1—h') g&

—(kh') &

Lk (1—k)y
Lh(1 —h') g&

XO OX

XX 00
00 XX

(c)
00 XX
XX 00

OX XO

E+E'
—(F+E')

E

—(E+E')
E+E'
E'—E
E—E'

4$$

4$$

4$$

4$$

(1—s—P) (1—s' —P')
pp'
(1 s p)P'— —
p(1 s' P—')—

L(1—h) h'j&
—Lh(1 —h') g&

((1—h) (1—h') g&

—(hh') &

Lh(1 —h') j&
—L(1—h)h'j&
—(hh')~

L(1-h) (1—h') g&

fh(1 —k') g&

—Lh'(1 —h))&
—(hh')&

E(1—h) (1—h') 3'

L(1-h)h'j&
—Lh(1 —h') g&

L(1—h) (1—h') g&

—(hh') &

' For transitions which change spin, reverse designations oi (k'g, —k'$) in the initial and in the final states.

The factor of two comes from the sum over spins in the
initial configuration and the second form from the fact
that

~
&kk ~' is symmetric in k and k'.

The calculation of the corresponding factors for the
superconducting case is complicated by the fact that
any given state 'ko may be occupied singly or by either
ground or excited pairs, and these possibilities must be
weighted by the probability that they occur in a
typical initial wave function. First consider matrix
elements of an operator which does not give a spin
change:

(+f
~
Zk, k', Ir ~kk'&k'r &klr

~
+i) ~ (4.5)

Nonvanishing matrix elements of ck t*ckt are obtained
only when the single and excited-pair occupancy of 4',.
and %y is the same except for those designated by wave
vectors k and k'. Further, 4'; must contain a configura-
tion in which kg is occupied and k'g unoccupied and
+r one in which k'g is occupied and kg unoccupied.
The various possible transitions along with the matrix
elements are listed in Table II. While the individual
matrix elements are complicated, fairly simple results
are obtained when a sum is made over all transitions in
which k is in a volume element Ak and k' in d,k', it
being assumed that Bkk is a continuous function of k
and k'.

The first type of transition, (a), listed in Table II
corresponds to single occupancy of kp in the initial and
of k'g in the 6nal state. Pair occupancy of k' (i.e., the
pair k'p, —k'g) in 4'; and of k in 4'y may be either
excited or ground, giving the four possible combinations
listed in the second column. These have components in

which the pair states k' in 4; and k in +r are unoccupied,
designated by XOOO for 4'; and 00 XO for 0'~. There
is a nonvanishing matrix element of ck t*ckt between
these components. Other components of the same wave
functions have the pair states k' in +, and k in 4'r
occupied, as is indicated by the designations XOXX
and XX XO, respectively. While the matrix element of
cI, t*c~t between these latter vanishes, that of c I,g~c ~ g

does not. Since both ck t*ckt and c kg*c k g are included
in the sum in (4.5), they will give coherent contributions
and must be considered together. Matrix elements
between these states of all other terms in"'the sum are
zero.

Matrix elements of type (b) are for single-particle
occupancy of —k'g in 4'; and of —kg in 4/, while k in
4'; and k' in @r may be occupied by either excited or
ground pairs. With interchange of spin and of k and k',
they are similar to type (a). Type (c) represents single
occupancy of kg and —k'l, in +, and either excited or
ground pair occupancy of both k and k' in +r. Transi-
tions of ck g*ckt are allowed for the component OOXX
of +J and of c kg*c k g for the component XXOO.
Again, these are coherent. Finally, type (d) represents
excited or ground pair occupancy of N; and single
particle occupancy of —kg, k't in 4'r.

The energy differences I/I/'; —
IVAN listed in the third

column are obtained by taking an energy 2E for an
excited pair, E for single occupancy, and zero for a
ground pair. We have used the notation E=E(k);
E'=Z(k'), etc.

In column 4 are given the probabilities of the initial
state designations, based on taking 2's for a speci6ed
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Ck't bk bk' +01 C—k'$bk +01)

C kg C k gckt q01=C k gbk P01)

(4.9)

(4.10)

the matrix element is —(hh') &. The other matrix
elements of types (a) and (b) may be calculated in a
similar manner.

For types (c) and (d) we make use of the decompo-
sition (3.10). For example, for type (d),

+i &119 ll(1k)1k')+&100~10(1krok')

+&01'pol(oky1k')+ikoopooo(ok&Ok') y (4'1 )

where the n's are as listed in Table I. The final wave
function is

0 f=Ck'f Ckt+10 ~ (4.12)

Thus the matrix element of ck g*ckt is just n10. The
matrix element of c kg*c k g is found from

single occupancy, p for an excited pair, and (1—s—p)
for a ground pair. For example, 0, in the top row
corresponds to kf occupied and a ground pair in k',
and the fraction of the states k in the volume element
Ak and k' in b,k' which have this designation is
-', s (k) L1—s(k') —p (k') ).

To calculate the matrix elements, it is convenient to
decompose the wave functions into components corre-
sponding to definite occupancy of excited and ground
pairs as in (3.10). Thus', for the top row in which k
in 4, and k in 4'1 are both ground pairs,

~,=ckt'P "0 oi(Ok, 1')+(1—@')'*0 00(Ok,o') ], (4 6a)

%y= ck~t*LA~pip(1 k,0k~)+ (1—k) *goo(Ok Ok~)], (4.6b)

where

+10—bk bk'+01

The matrix element of ck t*ckt is

( 1I k t*ckt I%,) —
I (1—h) (1—h')] (ck t*q op I

ck ~*@00)

= L(1—h) (1—h') )'*. (4.7)

The matrix element of c kp*c k p is given by

(axle, g*c k pl~, )
= (hh )*(ck t*&k*fk q pile kg'c k gckt*p oi). (4.&)

Since

giving +(hh')&. We have indicated the change in sign
in the table by listing —c kp*ck t at the top of column 6.

In a second-order perturbation theory calculation,
one is interested in determining

I(+~l E &kkc'.*ck.l+;)I'
k, k', g

(4.16)

where the sum is over all intermediate states, f The.
initial state shouM be a typical one for a given temper-
ature T. In general, one might have either

Bkk =+8 k, k, (case I) (4.17)

Bkk~= —8 k~, k. (case II) (4.18)

The latter applies to the magnetic interaction. To take
the coherence into account, one may take the spin-
independent sum over k and k', which designate initial
and intermediate states:

k, k'

I &kk
I & I (+~ I

c't*c»~c-W*c-'i
I +~) I )A.

(4 19)
W;—8'f

where the average is taken over volume elements Ak
and hk' for the initial state.

For terms with an energy denominator 8;—JV~
=E—E', we have

c kg*ck t. They are the same as the corresponding
matrix elements for parallel spin, except for a reversal
of sign of the reverse spin transitions. For example,
for the type (a) transition of the top row, the final
state is now

+~= — ~*Lh'*v o(1 O )+(1—&)'v (o O )j (415)

The matrix element of c k s*ckt is L(1—h)(1 —h') j& as
before. To obtain matrix element of c kg*ck t, we now
have, corresponding to (4.9) and (4.10),

bk bk q01=ck~tbk q01)

C k1 Ck& tCkt +01 Ck'tbk +01)

c—k$ c—k'$+01 C—k$ C—k'gbk' bkp10
=Cki t Ckt +10)

so that we find
(4.13)

(L(1—h) (1—h') )&w (hh') &)'I —s(1—s' —p')

+'Ps+ ss+P(1 s P)j
(+pic-ks*c—k sl+.)—&01. (4.14)

Those for type (c) can be obtained by interchanging
initial and final states and spin up and spin down.

%e have so far assumed a spin-independent inter-
action. One involving a spin Rip maybe treated by exactly
similar methods. Initial and final states differ from the
parallel spin case by interchange of spin designation of
k in the initial and in the final state. There is a coher-
ence between the matrix elements for c k g*ckg and

66 %60
=-; 1+ f(1-f'). (4.20)

zz

—2 I
&kk I'L(p ")

k, k'
(4.21)

Table III lists the average matrix elements for the
various values of O';—WJ.

The second-order perturbation theory sum may be
written



THEORY OF SUPERCONDUCTIVITY ii9i

TABLE III. Mean square matrix elements for possible
values of W;—5'y.

—(E+E')

g+QI

(I (g't I os t*est+o-»'o-s g i+') I')Av

l((+ @@,')f'(( —o

—:((--zz-')o

where

« ~e()'i ( f f v(—
1.(e,e')=- 1+

EE' i &E—E')

1( eeWeo ) (1 f f v- —
+- 1—

2( EE' ) ( E+E' j
1 f (1—2f)E—(1—2f')E'~

1 (ee'~e()s) f'(1—2f)E' —(1—2f')E)

) i es—s" j'

(4.22)

The upper signs correspond to case I, the lower to
case D.

To determine the probability of a transition in which
an energy quantum hv is absorbed, we have a sum of
the form

2'—2 l~» I (I (+t lc't*"t~i-»c-'4l+')
I )A.

$ k, h'

X 8(WI—W; —hv). (4.23)

For the matrix elements for which Wy —8';=E—E',
we may interchange k and k' in the sum and combine
them with those for which 8"~—8';=E'—E. This just
gives either one multiplied by a factor of two:

2Ã «W )e()—Z 21~» I'sl 1+
EE' )

Xf(1 f') 8 (Wy W;—h—v). (4.24—)

One may interpret the factor of two as accounting for
the sum over the two spin possibilities of the initial
state. If

I
Bst,.I' is symmetric with respect to the Fermi

surface, so that we may sum over + and —values of
e and e', terms odd in e and e' drop out, and we find

2Ã t' eo' )
4I 8». I'I 1~

is s.s )sp ( EE')

Xf(1—f')8(E' —E—hv). (4.25)

X (1—f) (1—f') l) (E+E'—hv), (4.26)

2Ã ( eo'

, lff'~(E+E'+h ),
ttt s,s»v ( EE'j (4.27)

respectively, where again we have dropped terms odd
ln e and c.

Hebel and Slichter'4 have used (4.25) to estimate the
temperature dependence of the relaxation time for
nuclear spin resonance in the superconducting state
from the corresponding value in the normal state. They
are able to account for an observed initial decrease in
relaxation time in Al as,'the temperature is lowered
below T,. The increased density of states in energy in
the superconducting phase more than makes up for the
decrease in number of excited electrons at temperatures
not too far below T,. For this problem, the lower sign
(+) is appropriate.

These expressions may also be used to determine
transport properties, such as electrical conductivity in
the microwave region and thermal conductivity.

Pote added evt proof. The marked e—ffect of coherence on the
matrix elements is verified experimentally by comparing absorp-
tion of ultrasonic waves, which follows case I, with nuclear spin
relaxation or electromagnetic absorption, both of which follow
case II. For frequencies such that hv«kT„one expects for case
II an initial increase in absorption just below T„ followed by a
decrease to values below that of the normal state as the tempera-
ture is lowered, as is observed experimentally. On the other hand,
for case I one expects the absorption to drop with an infinite
slope at T„such as is found for ultrasonic waves.

The expressions for the transition probabilities are simplified
if we change our convention for the moment to give E the same
sign as e, so that E= —(e'+so')& below the Fermi surface. One
may then write (4.26) and (4.22) in the same form as (4.25), with
E and E' now taking on both positive and negative values.
Considering both direct absorption and induced emission, the net
rate of absorption of energy in the superconducting state is
proportional to

where E'~E+hv and p(E) =f(v(0)E/(Es —eos)& is the density of
states in energy.

With the upper sign (case I) and with hr «kT, the density of
states terms are cancelled by the first factor, and the expression
reduces to

~."2L&(0)j'f„(f—f')dE=2LtV(0) Jhvf(eo),

The factor 2 comes from adding contributions above and below
the Fermi surface. The corresponding expression for the normal

'4 L. C. Hebel and C. P. Slichter, Phys. Rev. 10?, 901 (j.957).
We are indebted to these authors for considerable help in working
out the details of the calculation of matrix elements, particularly
in regard to taking into account the coherence of matrix elements
of opposite spin.

The corresponding expressions for Wy W—;=E+E' and
—(E+E') are:

2' sos—2 2I~» I'I 1~
A s,s»v 0 EE')
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where

1+—8 y —2 —X y),

y= (hv —2op)/(hv+2op).

(4.32)

(4.33)

This expression is in excellent agreement with data of Glover and
Tinkham (reference 20, Fig. 6) on infrared absorption in thin
films.

V. ELECTRODYNAMIC PROPERTIES

The electrodynamic properties of our model are
determined using a perturbation treatment in which the
first order change in the wave function is used to
calculate the current as a functional of the field. For
such properties as the Meissner eGect this approach is
quite rigorous since we are interested in the limit as
A(r) approaches zero. It is assumed that the medium
is infinite and that the sources of the field may be
introduced by inserting current sheets in the interior.
This method has been applied previously to the calcu-
lation of the diamagnetic properties of an electron gas."

We first derive an expression, valid for arbitrary
temperatures, relating the current density to the total
field (the field due to the sources and to the induced
currents). The fact that the system displays a Meissner
eGect is established by investigating the Fourier trans-
form of the current density in the limit that q

—4. In
this limit we obtain the equation,

1
limj (q) =— a(qt),

cAp
(5.1)

"This method was first applied to the calculation of the
diamagnetic properties of an electron gas by O. Klein, Arkiv Mat.
Astron Fysik, A31, No. '12 (1944). Our treatment follows that of
one of the authors as given in reference 7, pp. 303-321, where
further references to the literature may be found.

state is similar, except that &0=0. %'e thus find

n, /n =2f(op). (4.29)

R. W. Morse and H. V. Bohm (to be published) have used (4.29)
for analysis of data on ultrasonic attenuation in an indium
specimen for which the electronic mean free path is large compared
with the wavelength of the ultrasonic wave, so Ithat one might
expect the theory to apply. Values of oo(T) estimated from the
data by use of (4.29) are in excellent agreement with our theo-
retical values (Fig. 1).

For case II, the integral may be expressed in the form:

n, 1 f" (EE'+ops) (f f')dE—
n hv J ((E'—oo') L(E+hv)o —oo'j}&

The integral diverges at E=eo if hv is set equal to zero in the
denominator. Numerical evaluation of the integral indicates that
for hv~ohT, or less, (4.30) gives an increase in absorption just
below T, as observed by Hebel and Slichter in nuclear magnetic
resonance and by Tinkham and co-workers (private communi-
cation) for microwave absorption in thin superconducting films.

In order to have absorption at T=0, hv must be greater than
the energy gap, 2~0. We take E negative and E' positive, and find
for this case:

a 1 f"—oo fE(E+hv)+ooogdE
n„hv J oo—ov ((E'—op') L(E+hv)' —po'j} &

The integral may be evaluated in terms of the complete elliptic
integrals, E(7) and E(7) as follows:'

where Az is a function of temperature, increasing, in the
free-electron approximation, from the London value
A=m/tie' at T=O to infinity at the transition temper-
ature.

The limiting expression (5.1) is valid only for values
of q smaller than those important for most penetration
phenomena. In general we find the current density is a
functional of the vector potential A which, with div A
=0, may be expressed in a form similar to that proposed
by Pippard (1.3):

3 I.RLR A(r')/J(R, T)dr'
j(r) =-

4orcArpp~ R4
~ (5 2)

The kernel, J(R,T), is a relatively slowly varying
function of temperature, and at T=O'K is not far
different from Pippard's exp( —R/$p).

To calculate penetration depths, it is more convenient
to use the Fourier transform of (5.2), which may be
expressed in the form

1(tl) =—(c/4 )E(v) tt(tf), (5.3)

where E(q) is a scalar which approaches the constant
value 4ir/(Azc') in the limit q

—vO. One may determine

E(q) directly from the perturbation expansion of the
wave function, or one may first calculate J'(R, T) and
then find the transform of (5.2). The latter procedure
is followed in Appendix C, where an explicit expression
for E(q) valid for q not too small is derived. In this
section we shall give a direct derivation of the transform
which can be used to investigate the limit q

—+0, and
then give the derivation of (5.2). A comparison of
calculated and observed values of penetration depths is
given at the end of the section.

In the absence of the electromagnetic field, the
system at a given temperature is characterized by the
complete orthonormal set of wave functions which we
denote by

+p(T), +t(T), +„(T),
with corresponding energies

Wp(T), Wi(T) W (T) . (5.4)

We choose for 4'p(T) a typical wave function of the,

type described in the previous sections, where the
occupation of "single particles" and "excited pairs" is
given by the s and p distributions, respectively,
appropriate to the temperature T; the rest of the phase
space is available for "ground pairs" whose distribution
is specified by h which is also a function of T. The set
of orthogonal states is obtained by varying s and p (in
analogy with the normal metal) and not changing h.
%e thus are choosing a representative configuration of
the most probable distribution and taking system
averages with respect to this representative configur-
ation.

The electromagnetic interaction term for an electron
of charge q= —'e, e)0, is, in second quantized form,
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—gek
Hr ——dip(r) (A. V+V A)

2mc

To the lowest order in A(r), the expectation value of
the current operator is then

j()=( 13()I )=( il3~()I p)

+(col~ ()IC )+(c
where the last equality follows if the current in the
field free state, j p (r) = (C p I 3(r) I

C p), vanishes. "'
If (5.7), (5.9), and (5.11) are combined with (5.12)

and the condition q a(q) =0 is used, we obtain for the
paramagnetic part of the current density,1

P(r) =—P cp, .l.e'" r

Q& x, a e'A'(2~) *'

(5.6) j (r) = Z Z 2 (2k+q)k
2m2cQ2 i+p Q, q, o Q', q', a'

We choose a gauge in which V.A=O and in which A=O
if the magnetic field is zero.

We expand P and P* in creation and annihilation
operators":

where the c's satisfy the usual fermion anticommutation
relations, (2.1) and (2.2), e, is a two-component spinor,
and Q is the volume of the container. The interaction
Hamiltonian becomes, when one neglects the term of
higher order, in A,

&(q') e "'(q'p(2')
I c~+'."*c'"

I
q"(&))

where

eh (2n)&
Hz= Q c&+, .*c&,.a(q) k,

mc Q

a(q) =
I

—
I

dr A(r)e '&'.
(2~& &

(5 7)
+complex conjugate,

'

(5.13)

(5.14)

while for the diamagnetic part we have

jii(r) = —(ee'/mc) A(r),

The current operator 3(r) is

iek e'
~~ (r) = (/*VS —Berm. conj.) — /*AD

2m mc

where n is the number of conduction electrons, of both
spin directions, per unit volume.

The spin sums and the calculation of the average
matrix elements can be carried out as indicated in
Sec. IV, (4.16) to (4.22). We then obtain

=3&(r)+3 (r) (5.g)
jp(r) = Q (2k+q)k

2m'c Q'Expanding P and P* as in (5.6), we get
~ a(—q)e

—"'&'L, (p&, p„+p), (5.15)
3i (r) = Q cg+, .*cp,.e—"'(2k+ q),

2mQ &, q, ~

e
gii(r)= — —P cg+p cp, e '&'A(r).

mc Q &, q. ~ 1 t'1 f f ) ( —p p +—ppP )I.(p, p') =—
I

1—
2( E+E' ) & EE' )In the presence of the electromagnetic field the wave

function for the system may be written

C (A) =I p+Ci+ (terms of order A' ) (5.10)
1(f' f & p pp'+—&P~

+-I II 1+ I (516)
2 iE E') I EE' )—

where the usual perturbation expression for C ~ is

where 1-(pj, pk+p) is given by (4.22) with the lower
(5.9) signs, corresponding to case II. Setting p~=e and e~+,

= e', the explicit expression for L is

"At this point we insert plane waves for the Bloch functions.
It would be possible to carry through an analogous procedure
formally with Bloch functions. The average matrix elements
which enter cannot be evaluated explicitly, but can be expressed
in terms of empirically determined parameters. The appropriate
modifications of the free-electron expressions are as indicated in
the introduction.

36' lV ote added in proof. —We neglect the e6ects of the momentum
dependent cutoQ on the expression for the current density; as
shown explicitly by P. W. Anderson (private communication)
errors introduced are negligible in the weak coupling limit. In a
general gauge, A=AO+gradp, with div AD=0, it would be neces-
sary to include in the perturbation expansion collective excitations
of the electrons, the simplest of which corresponds to a uniform
displacement of all of the electrons in momentum space. Energies
and matrix elements of collective excitations are nearly the same
in normal and superconducting phases. We assume the collective
excitations make a negligible contribution to the current form Ap
(see J. Bardeen, Nuovo Cimento 5, 1766 (1957)).
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To show how (5.16) reduces to the usual expression
for a free-electron gas in the limit ~0~, we note that
E is dered so that it is intrinsically positive, while the
Bloch energy e may be either positive or negative. As
e~, Z~l el. If e is negative,

f(e)= f( I«—I)=1—f(lel)=1 —f(E), (5.17)

To get a nonvanishing contribution from the first line,
& and e' must have opposite signs, while for the second
line they must have the same signs. Ke thus And that
L(e,e') +(f-' f)—/(« «')—, as it should [see (4.4)j.

P dep~

ep dP)
(5.25)

The total induced current thus becomes:

A ne'
limj(q) =ji+j&————,'a(q) = — a(q). (5.26)
q-+o Ap @ac Apc

The London constant Ap can also be expressed in terms
of derivatives of eo, as is done in Appendix C where the
following result is derived

The Meissner Effect

To establish the existence of the Meissner eGect,
we investigate the Fourier transform of j(r) in the
limit q—4. If j(q) does not go to zero in this limit,
and is opposite in sign to a(q), then the system will

expel the field from its interior and behave like a
perfect diamagnet.

The Fourier transform of the paramagnetic part of
the current density, ji (r), is given by

(5.18)

Referring to (5.15), this can be written as

In the two limiting situations T 4and T——+T„Alber
can very easily be evaluated. As T—40, p becomes
infinite, so that Az becomes equal to A, the London
value

lim (A/Ap) = 1—2)l dy expL —(y2+Ppepp) '$ = 1. (5.27a)
T~O

0

This could have been seen immediately from (5.19)
since in the T—4 limit L(ek, ek4.2)=0 and the para-
magnetic part of the current density is zero. This limit
just gives the equation obtained by London assuming
complete rigidity of the unperturbed system wave
function in the presence of an electromagnetic Geld.
When T—+T„e«P goes to zero and A/Ap also goes to
zero, since

e'f22 ( 1 $ '
tj P(q) =

l
—

l
dk (2k+q)k a(q)L(«keek+, ), (5.19)

mpc E2pr) &

(A ) t' eddy
lim

l

—l=1—2 ~~

~, (1+e)2
(5.27b)

where in the limit that q~, ek=ek+p and L(ek ek+p)
becomes

llmL(ek&ek+p) =
(1+ePE)2

(5.20)

Thus we want to evaluate

limj&(q) =
e2&2 t' 1 l '

dkkk a(q) . (5.21)
m'c (2'�) (1 +eee)2

ePFi

Choosing a(q) as the polar axis, the angular integration
can be done; then, using the relations n=kpp/32r2 and
h 2

——fipkpp/2m, we get

ne
limj&(q) = a(q),

mc
(5.28)

The small Landau diamagnetism would appear only in
a higher order. We thus find that when the system is in
the superconducting phase, the current density in the
London limit has the form (5.1), with Az varying from
A to ~ as T goesfrom0 to T,.

It is interesting to note that the Meissner e8ect
occurs for any value of ep/0. If «p=O (for example if'

we let V=O), then, for T)0, p«p=O and from (5.27b)
we see that A/h. z=0. The paramagnetic part of the
current density is then

where

ppe2( A)
limj (q)=

l
1——la(q),

mc&
(5 22) and the total current in the «1~ limit becomes

limj(q) =0.
q-+0

(5.29)

2P hi
1——=— ~' k4dke&e(1+e&E) '

~r &F' ~O

Letting y= e/kT, and using the sharp maximum of the
integrand at e=o, we find

This is also true when T=O, though in this case one
must be careful of the order in which the various
limits are taken.

Current Density

exp(y'+p'e p') pA
1 =2

L1+exp(y'+P'ep')'j'

We now evaluate the spacial distribution of the
(5.24) current density and exhibit it in a form similar to that

proposed by Pippard. The method we use follows that
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of one of the authors' who carried out a similar calcu-
lation for an energy-gap model.

Beginning with (5.15), setting q=k' —k, and using
the fact that q a(q) =0 and that we can write terms
like ke'"' as

ke'"'= i Ve'—~'
) (5.30)

we can reduce all of the angular integrations to integrals
of the form

as cos(k+k')R is very rapidly oscillating in the region
of interest.

Now, making the change of variable dk= (dkld8)de,
approximating the slowly varying terms k+k'~2k+
and dk/2 8~1/hpp, where vp is the velocity of an electron
at the Fermi surface, and using the rapid convergence
of the integral to extend large 6nite limits to in6nite
ones, we obtain

2
sin9d8e+'"'&' ")= sinks,

kE
(5.31)

G, (R)—G„(R)
)dk q' h

= —-,'kr4R'(
) m'ep(0) —J(R,T), (5.39)

& ds),
where R= ~r—r'~. Then, using the relation

where

and
J(R,T) =I(R,O) —I(R, ep) (5.40)

(sinkR ) kR coskR sink—R
~E.,( kR) kR'

we 6nally obtain

(5.32)
I(R,ep) =

h/ep(0) « de de L(e&e )

and
f(k,R) =kR coskR —sinkR. (5.35)

These equations correspond to (21.4)—(21.6) of reference
/. The entire current density j (r) can now be written

j(r) =j~(r)— A(r).
mc

(5.36)

It is convenient to subtract and add G„(R) inside the
integral (5.33), where G„(R) is G, (R) evaluated at ep=0.
The integral evaluated with G„(R) gives the para-
magnetic current contribution of a free electron gas and
just cancels the term —(ee'/mc) A(r), leaving the small
Landau diamagnetic term in which we are not inter-
ested. We have left the interesting part of the current
density:

e'k' p (G.(R) —G„(R)/RLA(r') Rj
j(r) = dr' . (5.37)

2m'c~4~

An inspection of G, (R), (5.34), reveals that the
major contribution to the integral comes from the
region k, k'~kr (i.e., very close to the Fermi surface).
Since we are interested in values of E&penetration
depth which is ~10 ' cm, in the region of the major
contribution, kE~k'R&&1. Kith this in mind, the
product f(k,R)f(k'R) becomes

f(k,R)f(k', R)~kk'R' coskR cosk'R
= —',kk'R'[cos (k+k') R+cos(k —k') R)

'kk'RP cos(k —k') R,——(5.38)

e'k' r (A(r') ~'R) ~RG, (R)
j~(r) = dr', (5.33)

2m~ex 4" R4

where
F00 ~00

G, (R) = i dk dk' kk'f(k&R) f(k'&R)L(e, e') (5.34)

)&cos (e—e') . (5.41)
k'vp

The current density then becomes

—3 prep 0
I

J(R,T)RC A(r') Rj
dr' (5.42)

E.4
()

j(r) =
4zcAp Amp &

where hz has been given by (5.25).
The current density has now been written in a form

in which it is easily comparable to Eq. (1.3), proposed
by Pippard for a pure superconductor, where we
identify 1/fp with the microscopic quantities:

1 prep(0)
(5.43)

gp Amp

and where J(R,T) is to be compared with the expo-
nential function, exp) —R/$pj. We have deined J(R,T)
so that it has the same integral as exp( —R/Ppj:

pOO

J(R,T)dR= $p.
Jo

As evaluated in Appendix C, J(R,T) is given by

hr ep(T) ep(T)
J(R,T) = tanh-

h. ep(0) 2kT

(5.44)

2ep(T) ~"

7f' 4 p

(2R q1 —2f(E').

Ehpp I e'8'
(5.45)

from which (5.44) can be established. In the London
limit, where A(r) varies so slowly compared to the
coherence distance $p that it may be taken out of the
integral sign, we obtain

1
j(r) = — A(r), (5.46)

chal

as has been shown previously.
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t.0

0.8

reQection and for random scattering, based on corre-
sponding expressions derived by Reuter and Sond'-
heimer'~ for the anomalous skin eQ'ect. The penetration
depth, de6ned by

Q2

0 .5 I.O L5 2.0 2.5 KO 5.5 4.0 4.5 5.0

is given by

~ 00

II(x)dx,
a(o)J.

2 t' dg

s Je q'+E(q)

(5.51)

(5.52)

R/'(

FIG. 5. The kernel J(R,O) for the current density at T=0'K es
ff/Pp, compared with the Pippard kernel, exp( —R/&0).

for specular reQection and by

(5.53)
With this normalization of J(E,T) it turns out that

most of the temperature variation of the current density
is contained in Ap, and that the integral does not
produce eGects that vary very much with the tempera-
ture. This will be made clear later in the calculation of
the penetration depth as a function of the temperature.

At T=o, J(R,O) has the simple form

2J(R,o) =— Es(y)dy,
X'ss 2eP(0)R jfiVO

(5.4/)

and when E=O
J(0,0) =1. (5.48)

Thus J(E,O) not only has the same integral as the
exponential but also the same value at R=O. A com-
parison of the two given in Fig. 5 shows that they are
quite similar.

We may express $s in a form similar to that suggested
by Faber and Pippard":

$p ——u (Aep/k T.), (5.49)

where u was adjusted empirically from observed pene-
tration depths. From (5.43), we find

Asp 1 If'Tq Asp As()
=0.18

. see(0) s ep(0) kT, kT.
(5.50)

Our theoretical value of 0.18 is between the empirical
estimates of 0.15 by Faber and Pippard" and of 0.27
by Glover and Tinkham. "Thus at the absolute zero
our theory gives a current density very much like that
proposed by Pippard. Since J(R,T) varies slowly with
T, most of the temperature variation is contained in
the constant A~.

Penetration Depths

A most important application of the equations we
have derived for the current density is to the calculation
of 6eld penetration at a plane surface. The results
depend to some extent on the boundary conditions for
scattering of electrons at the surface. Pippard" has
given general solutions for the limiting cases for specular

31/6
~ ~), s

(2 )& l J(O,T)j (5.55)

while the value for specular reQection is smaller by a
factor 8/9.

I.O—

0.8—

0.4—

0.2—

G3 0.4 G5 0.6 G'T 0.8 G9 I.O

/' c

FIG. 6. The temperature variation of the penetration depth,
X„, in the infinite coherence distance 1imit, (&0/P) —+ ~, compared
with the empirical law, I X(O)/X(T)]'=1 —g4.

"G. E. H, Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) -A195, 336 (1948).

Ink1+q-'E(q) jJ,
for random scattering, where E(q) is defined by (5.3).

Limiting expressions have been given for $s/X large
or small compared with unity. The London limit
corresponds to $s«X, in which case E(q) is a constant
=4m/Arc' over the important range of integration. The
penetration depth is then

Xl, (T) = (4w/Arc') l. (5.54)

For a free-electron gas, this reduces to the London
value (mc'/4wee') at T=O'K. Since, for most metals,
$s 10 ' cm and X~5&&10 s cm, it is the opposite
limit, $0))X, which is more applicable (except possibly
near T,). In this limit J(R,T) does not vary much over
the penetration depth, so that it is only the value at
2=0, J(O, T), which enters. Pippard" has given expres-
sions for A, in this limit, called )„.For random scattering,
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TABLE IV. Penetration depth, ), at T=O'K. '

Metal
10%,L,
cm

10'ikeo/k T~
cm

(3)

104)o
cm $o/XI,

(5)

Specular re8ection
) /'hl, 10'

(7)

Random scattering
X/Xz, 109

(9)
Obs.
109
cm

Tln
Aluminum

3.5
1.6

1.4
8.2

0.25
1.5

7.3
93

1.4
2.8

4.8
44

1.6
3.2

5.7
5.2

5.1
49

a Values of ) I, and eo are those estimated by E~aber and Pippard» from high-frequency skin resistance and normal electronic specific heat. The value
of $o is 0.18h7jo/kTo. as in (5.43). Ratios in columns 5 and 7 are taken from Fig. 6. Observed values are from reference 25.

The temperature dependence of A.„can be obtained
directly from (5.45). The second term vanishes when
R=O, so that we have

M(0) ep(T) tanhP-,'Pep(T)$ '

X„'(T) ep(0)
(5.56)

A plot of this quantity on a reduced temperature scale
is given in Fig. 6. It is plotted in this way so that a
comparison can be made with the empirical law:

based on the Gorter-Casimir two-Quid model. It is seen
that our theory is very close to the empirical law except
for temperatures very close to T,. It is in this region
that the approximation $p))X becomes invalid as a
result of X increasing with T. The corrections are such
as to reduce the theoretical values so as to bring them
closer. to the experimental values.

To determine )t(T) for intermediate cases, we plot in
Fig. 7 the quantity X(T)/Xz(T) as a function of Pp/

Xz,(T). The calculations are based on use of the asym-
totic forms for E(zJ) near T=O' and T= T, given in
Appendix C, and numerical integrations of (5.52) and
(5.53). The curves for the two limiting temperatures
are quite close together, indicating that the eRect of
the variation of J(R,T) with temperature is rather
small. This procedure is analogous to that of Pippard'
who gave a plot by means of which one can determine
X from known values of $p and Xz for the case J(R,O)
= exp (—R/Pp).

Using our theoretical expression (5.50) for Pp and
empirically estimated values of vp and Xz(0) for tin and
aluminum, s' we have obtained $p/Xz(0), and, using
Fig. 7, have determined X(0)/Xz(0) for these two metals
(Table IV). The agreement between theory and experi-
ment is reasonably good, the experimental values falling
between the theoretical values calculated for random
scattering and specular reflection.

The theory we have presented applies to a pure
metal. Pippard' has shown experimentally that the
existence of a finite mean free path, l, due to impurity
scattering, has the eRect of increasing the penetration
depth, and has suggested that it may be taken into
account by introducing an extra factor, exp( —R/l),
into the kernel for the current density. One of the
authors7 has shown why such a factor may be expected
from a theory of the diamagnetic properties based on

2.5

2.0

I.5

I.O
O. IO 1.0

$, I X„(&)

IO IOO

Fzo. 7. The ratio X(T)/Xz(T) ps pp/Xz, (T) for the boundary
conditions of random scattering and specular reQection and for
temperatures near T'=O'K and near T=T,. The temperature
variation of Xz(T) is given by Xz(T) = (Art'/44r) &.

an energy-gap model. Similar considerations apply to
the theory developed in this section; however, eGects
of coherence on the scattering matrix elements intro-
duce complications and the proper correction factor has
not yet been worked out.

To complete the electrodynamics we should give a
relation corresponding to the second London equation,
the one which gives the time-rate of change of current
when an electric field is present. Such a theory would
require a calculation, not yet completed, of transport
properties with our excited-state wave functions. We
expect to find something similar to a two-Quid model,
in which thermally excited electrons correspond to the
normal component of the Quid. For frequencies such
that hv«ep, one may determine Bj/Bt for the super-
conducting component by taking the time derivative
of the integral relation (5.2) and then setting BA/Bt
= —cE in the result (see reference 7).
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VI. CONCLUSION

Although our calculations are based on a rather
idealized model, they give a reasonably good account
of the equilibrium properties of superconductors. VVhen

the parameters of the theory are determined empirically,
we find that we get agreement with observed speci6c
heats and penetration depths to within the order of
10%%u~. Only the critical temperature involves the super-
conducting phase; the other two parameters required
(density of states and average velocity at the Fermi
surface) are determined from the normal phase. This
quantitative agreement, as well as the fact that we can
account for the main features of superconductivity is
convincing evidence that our model is essentially
correct.

The basis for the theory is a net attractive interaction
between electrons for transitions in which the energy
diBerence between the electron states involved is less
than the phonon energy, A&. For simplicity we have
assumed a constant matrix element, —V, for transitions
within an average energy Ace of the Fermi surface and
have neglected the repulsive interaction outside this
region. In more accurate calculations one should take
an interaction region dependent on the initial states of
the electron and the transition involved, and also take
into account any anisotropy in the Fermi surface and
in the matrix elements. The fact that there is a law of
corresponding states is empirical evidence that such
eGects are not of great importance. Neglect of the
repulsive part of the interaction is in the spirit of the
Bloch approximation for normal metals, and appears to
be well justi6ed in erst approximation. Our theory may
be regarded as an extension of the Bloch theory to
superconductors in which we introduce only those
interactions responsible for the transition.

An improvement in the general formulation of the
theory is desirable. We have used that of Bardeen and
Pines in which screening of the Coulomb field is taken
into account by the Bohm-Pines collective model, and
the phonon interaction between electrons is determined

only to second order. Diagonal or self-energy terms in

the net interaction have been omitted with the assump-

tion that they are included in the Bloch energies of the
normal state. When the phonon interaction is so large
as to give superconductivity, higher order terms than
the second may well be important. One should really
have used a renormalized interaction in which such

higher order terms are taken into account as well as
possible. Very likely the assumption of two-particle
interactions is a reasonably good one, so that the only
eGect would be a redefinition of the interaction constant
V in terms of microscopic quantities.

The discussion of the matrix elements in Sec. IV
should be a good starting point for calculation of
transport properties in the superconducting phase. Our

excited state many-particle wave functions are not

much more dificult to use in such calculations than the
determinantal wave functions of the Bloch theory.

For calculation of boundary energies and related
problems, one would like to introduce an order param-
eter which can decrease continuously from an equi-
librium value for the superconducting phase to zero in
the normal phase as the boundary is crossed. The
Ginsburg-Landau theory and its extensions' appear to
give a good phenomenological description of such effects.
Perhaps the energy gap, 2eo, or, what is equivalent,
the coherence distance, $s, could be used for such a
parameter.

Another problem, not yet solved, is the calculation
of the paramagnetic susceptibility of the electrons in a
superconductor, such as is required to account for
Reif's data' on the Knight shift in the nuclear para-
magnetic resonance of colloidal mercury. Our ground
state is for total spin $=0. It is possible that there is
no energy gap between this state and those for S/0.
While a 6nite energy is required to turn over an
individual spin, it might be possible to construct states
analogous to those used in spin-wave theory in which
each virtual pair has a small net spin, and for which
the energy varies continuously with S.The explanation
of the observed electronic paramagnetism (about two-
thirds that of the normal metal) would then be similar
to that suggested by Reif himself.

In view of its success with equilibrium properties,
it may be hoped that our theory will be able to account
for these and for other so far unsolved problems.

The authors are indebted to many of their associates
for discussions which have helped to clarify the prob-
lems involved, We should like to mention particularly
discussions with C. P. Slichter and L. C. Hebel on
calculation of matrix elements, with D. Pines on the
criterion for superconductivity, and with K. A.
Brueckner on the exactness of the solution for the
ground state.

APPENDIX A. CORRECTIONS TO GROUND
STATE ENERGY

We may estimate the accuracy of our superconducting
ground state energy, 8'0, measured relative to that of
the normal state, by making a perturbation theory
expansion, using the complete set of excited state
superconducting wave functions as the basis functions
of the expansion. We first consider the reduced, H„g,
which includes only pair transitions for pair momentum
q=0, and then the eBect of the neglected portion of
the Hamiltonian, e'= II—a„d.

To the second order, the ground state energy of H„&
1S:

=We+ ~a"'+
's F. Reif, Phys. Rev. 106, 208 (1957).
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where

'(()a+i()o+ (()c

—2Eo
(A2)

~.= (+.I&'I+o) —(+ol&ol+ )' (A.3)

~o= (+o
~
&oK+&.&o

~
+o)

—2(+o Illo
I +o) (+o I&.I+o), (A4)

w, = (eo(&.')eo) —(+o[K]+o)', (A5)

&o= Q «)h)*&)+ Q ~«) ~&)h)*)
k))I(:y I(;(k~

H„=—V Q b), *b)„
k, Ir.'

the sum in (A"/) being carried out over the region
~

«o~

and
~

«), t
(h(o. If terms in Wo(') linear in the volume

of the system are evaluated, the following expressions
may be derived with the aid of the decomposition
(2.25):

p Ao)

w.=8%(0) d«h(«)C1 —h(«))«',
4O

~A~ &A~

no = —16K(0)V d «i d«2{h(«i) P1—h(«i) $

(A8)

4o 4 o

Xh(«o)L1 —h(«o) j}'P1—2h(«i)]«i) (A9)

-2

m, =8$1l)(0)Vg' d«ih(«i)$1 —h(«i)]
0

X~~ d«ot 1—2h(«o)]'. (A10)
0

With the use of the relations (2.35), (2.36), and (237),
terms linear in the volume in (A2) become

pA&—2«oWo(o) &81V(0) d««' h(«)$1 —h(«)]
"o

~o ~o

+ =0, (A11)
2E' 4E'I

and therefore Wo"'/Wo vanishes in the limit of a large
system.

It is likely that (+o[EE o [4'o) —(@o~lI ~4 o)aolso
vanishes in this limit for e small compared with the
total number of valance electrons in the system. For
4'o to be an exact eigenfunction of H„~, in the statistical
limit, it is required that the above condition hold for
all m, Since this requirement can be shown to hold in

Since the smallest excitation energy is 2eo, the second
order energy is overestimated by setting ~Wo —W;~
=2~o and performing a closure sum. We obtain the
inequality

+L(+oI+ & I+o) (+oI+ alamo) ]/( —2&o)

the strong coupling limit, it is possible that 0 o is exact
in the statistical limit for all values of the coupling
constant, although no proof has been found at this time.

We may estimate the eGect of the neglected portion
of the Hamiltonian, H'=II —H,.~ by a similar pertur-
bation calculation. To second order in H' the correction
to the superconducting ground state energy Wo (meas-
ured relative to the normal ground state) is

where

) (i/a'[0) )'

~'o —~'
(A12)

where the factor (3«o/E)) comes from the average
reduction in phase space as a result of conservation of
momentum of the pairs making transitions.

These estimates indicate that although the total
energy associated with H' may be signiicant, the eGect
of 8' on the condensation energy is very small. It should
be possible to obtain any required quantitative cor-
rections to S'0 by use of perturbation theory.

APPENDIX B. CHANGE IN ZERO-POINT ENERGY
OF LATTICE VIBRATIONS

The contribution to the condensation energy from
the change in zero-point energy of the lattice can be
estimated on the basis of the Bardeen and Pines
collective ion-electron treatment. ' Their theory gives

(( () „()) ( () ())}
6k 6k+a

where ek~') is the average occupation number in the
superconducting state and nk&"& that for the normal

(f )
H

( 0)= —V( Lh (k o) (1—h (k o ))h (k) (1—h (k )))'
—P (ko')(1 —h(ko))h(k')(1 —h(k))i~}. (A13)

The first term in (i~II'~0) may be identiied with
breaking up a pair in ko, the spin-down member going
to —ko'$ and breaking up a pair in k, the spin-up
member going into k't. The second term arises from
ko' and k' being occupied in the ground state and
arriving at the same intermediate state by ko'~kof
and —k'g —+—kg. The transitions involving particles
with parallel spin have been neglected since their
contribution is reduced by exchange.

Since the distribution of particle changes diRers only
over an energy region several ~0 wide, it is to be expected
that most of H/" will cancel between the normal and
superconducting phases. To estimate the energy differ-
ence, we shall carry out the sums over a region 6&0 wide.
Inserting typical values in (A12), we find

V'L31()T(0)«o$' (3«o )(-10-oW„(A14)
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state. The sum over x ranges over the erst zone and
k+x is to be interpreted as the corresponding reduced
wave vector so that Umklapp processes may be taken
into account. If k+x is replaced by k and x by —x in
the terms containing e&,+„, (81) reduces to

r, ()—w, &-)
where

J(R,T) = [AP/m'«P(0)h)(II+I2), (C2)

for positive and negative values of e and t.', the integral
may be written as the sum of two integrals with limits
0 and ~:

2
~
M„~ '(«I, —«I,~„)(I«1,&'& —e&,& "&)

(ll2)
(«I,—«),+„)'—(Aa&,)'

t'" [F(«)—E(«')$ COS«««COS«««'

Ig=2, ~ dade,
~o ~o 2 6 2

(C3)

«+«pGz
X N(«') t + i d.'

s I («—«')' —(A&u)' («+«')' —(Aa))'

~—2(~M. ~') N(0)h(«)d«2«[N(Bz)/Szj

—2 [N(0)$'«(P (A4&/hz) Wp 10 'W«, (33)

where hz is the energy at the zone boundary and typical
values have been inserted for the parameters. Thus, it
appears that the lattice zero-point energy should have
little eGect on the condensation energy.

APPENDIX C. EVALUATION OF THE KERNEL
IN THE PIPPARD INTEGRAL

According to (5.41), the kernel of the Pippard integral
expression for the current density at any temperature
T may be written

If the sum over x is carried out, it is seen that the
quantity multiplying the difference in occupation num-
bers is almost independent of k. Since e),&'& —

N&,
I"& is

antisymmetric with respect to the Fermi surface and
diGers from zero only in a range of the order of several

eo, it follows that the change in zero-point energy will

be small compared to 8"o.
A rough estimate of the sum gives

p
8&0

Wzp Wzp —2(~ M. ~') N(0)h(«)If«

[G(«) G(«) j««slna&«slnQ«d«d«
I2=2

o "o 2 I2
(C4)

f 9 P(«) COS(x«cosat«d«IE«
Ig=4(P' lim

a—+P, ~no J Ja a
(c7)

Here (P' indicates the principal part of the integral of
«' past «'= « is to be taken. Since F(«)—4 as «—+aa, the
value of the integral does not depend on how the upper
limits of the integrals over e and c' are approached.
Thus we may set b= ~ for both, and integrate over e'

first. This would not have been true if we had not
included I(R,O), the normal state contribution, which
is equivalent to the term proportional to A in the
expression for the current density. The lower limit is
more critical; we must take a the same for both e and
e' and approach the limit a=0 only in the anal result.
The integral over e' may be obtained from

t'" Cosa. «'d«' I'" COSA«'d«' )" d«'

(Cg)
~o 6 6 &o

F(«) = L1—2f(«) j«—L1—2f(~)j(~+«'~'), (C3)

G(«) = L1 —2f(«)3« ' —[1—2f(&)j~' (C6)

Unless the argument is given explicitly, «)& =«p(T).
If integration over the region about e'= e is made by

principal parts, each of the two terms in II (and each
of the two terms in I2) will give equal contributions.
Care must be taken to take the same limits for e and e'.

Thus we may write

J(R,T) =I(R,O) —I(R,«p)

+00

f( ')-f()
s'«)&(0)A~ ~ «—«'

L(«&«' ) cos««(««)d«A )

In the second integral on the right we have assumed
that u'is suSciently small so that cosne' may be replaced
by unity. The erst integral on the right may be evalu-
ated by contour integration and the second directly to
give

(C1)
COS(Y«d«slna« 1 t'«+ay——in] (. (c9)

2«E« —u&
where u=R/AI)«. The limits should really be &Aa), but
the convergence is suSciently rapid in the weak
coupling limit so that we may replace Ace by ~ without
appreciable error. One integration can be performed if Similarly, to evaluate I2, we have

use is made of the symmetry of the integrand in e and
«'. We shall use the second form given for L(«,«') in (p&

(4.22), with the lower (+) signs. From the symmetry

= —zx' cosa&. (C10)
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lim e &~ sin(2oR/Avo)dR= oihvo/o.
y—+Qg

p

(C17)
(o+ai doI+I = »— (o)»i

"a (o-g) o Thus, remembering that go= hvo/Loroo(0)$, we find

sin2ne F00

+v i ~F(o)—o'G(o) j do. (C11) — J(R,T)dRJ, 5o~o

In this integral we may take a=0, since the integrand integrate under the sign in (C13):
is not singular at the origin. Combining I~ and I2, we
And

In the limit e—4, the first integral gives a contribution
only near o=O. We may therefore replace F(o) by F(0).
The logarithmic integral may then be evaluated, and
we 6nd

I,+I,=~'ooP —2f(.,)]
p" 1—2f(E) sin2no—2v. oo' I do. (C12)

E e

Note that this expression vanishes in the two limits
oo—4 and n (or R)-+~, as it should. The second term
vanishes as R—4.

From (C2) and (C12), we may write

oo'Ar I" 1—2f(oo) 1—2f(E)
1

do
(CIS)

E

According to (5.44) of the text, Az is deined so that the
expression on the left is equal to unity. If we integrate
the right hand side by parts, we 6nd that

A t" d (1—2f(E)i do—= —~p

~, dE( E )E (C19)

This integral may be expressed in terms of &p and its
temperature derivative by diGerentiating the defining
integral for oo with respect to /=1!kT. By a change
of variable, Po=x, Poo ——y, we may write

J(R,T)=
2Arooo r" 1—2f(oo)

v oo(0)A" o oo

1—2f(E) sin2no
do, (C13)

E

t

o~ 1 2f(E)
dE

N(0)V ~o E
r es" 1—2f((x'+y')&)

dx. (C20)
(x'+~')'

which is equivalent to (5.45) of the text.
Since f=0 when T=0, we can write We now differentiate with respect to P, remembering

that y depends on. P. In the weak-coupling limit
Leo«&to, f(PA&a) 0), we find:2oo(0) ( v.

(2oo(0)

t "sin2ao
(C14)

o oE )J(R,O) =
1 d(Poo) oo t'"" d t'1 —Zf(E) ) do

o=-+ —
i i

— (C»)
P dP P&o dE( E iEThis can be put into a form convenient for evaluation

by using

8 t sin2no
t

cos2no
d6=2, ' d6

BQ'4 p E-E ~ p E
1 d(P.,)

A oo dP
(C22}=2Eo(2noo),

The integral converges suKciently rapidly so that we
may replace the upper limit by oo. Comparing (C19)

(C15) and (C21), we 6nd that

2
J(R,O) =— Eo(y)dy

~~ 2R/m-$0

(C16)

where Ep is a modihed Bessel function" which falls off
exponentially for large values of its argument. If we
now observe that Jo"Eo(y)dy=v/2, we obtain

as stated in (5.25).
Finally, we shall derive an approximate expression

for the transform E(q) valid when qhvo) oo(0). First
we express X(q) as an integral of J(R,T). The transform
of j(r) may be written

We next consider the integral of J(R,T) with respect
to E.. If we introduce a convergence factor, we may

3(a) = ——&(~)a(a)
4n-

3'See Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher
Trunscendenta/ Functions (McGraw Hill Book Company, Ine. ,
New York, 1953},Vol. 2, pp. 5 and 19, 4n.cAr /o J

t RLR a(g)ge'o R

J(R,T)dr. (C23)
R4
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To carry out the integration over angles, we take the which can be determined from (C20), the defining
polar axis in the direction of q and set u=cos8. This integral for ep. For 0) ei we may take f(E) 0. Thus
gives we find

3m. " +'
E(q)=,~ ~ (1 No)—e'"0"J(R,T)dldR. (C24)

C AT/0 0 —1 01& 0 E 01 LX(0)V 01 J
When (C13) is substituted for J(R,T), we require the
following integral:

4 q~vo=—ln . (C34)
01 cp(0)

oo ~+1

g(b) =
~t

e'~p" (1—01') sin(eRq/01)dgdR
0 —1

(1+by= (1—b') lnI I+2b,
&1—b)

where 01= oqhvp and b= 0/01. We thus find

(C25)

The latter form follows from the expression for 00(0)
in the weak-coupling limit. The remaining terms cancel
when bo' is neglected:

I' b' O' Idb

3 15 I b'

E(q) =
&000 t" 1—2f(ep) 1—2f(E) de

g(b)—.(C26)
qc AA00 J p eo

db
'

+
i,

I —+ + —=0. (C35)
3b 15b' b'

Expansions of g(b) for b small and b large are

1
b&1: g(b)=4I b b b—"—

3 15 )
(1 1

b&1: g(b)=4I —+
(3b 15b'

(C27)

(C28)

Thus we find that for qh00/00(0) =~q(p))1,

16eo
E(q) = 1—2f(00) — ln(orqgp) . (C36)

qc Af., I

'
q~0,

For q very small, E(q) approaches the constant value,

E(q) =Xi, '(T) =4m/(ATc'), (q—4) (C37)

Further,
db

g (b)—= -', pr'. (C29)

We may change the variable of integration in (C26)
from e to b, and then use diQ'erent expansions for b&I
and b&1. One of the integrals required is

q' 1—2f(E) 1 1 db
b —-b' ——b'—

3 15 b

E(q) =kn./(Ac') = 1/X&'(0), (q—+0); (C38)

E(q) = 1— ln(n. qb), (large q). (C39)
4ql11,'(0)$0 pr'qpp

where h.p is the temperature-dependent London con-
stant de6ned by (C22). For intermediate values of q,
one may interpolate between this constant value for
m.quip &1 and the asymptotic form (C36) for large q.

The two limiting cases are T=0'K and T close to T,.
At T=0'K, 00~00(0) and f(ep)~, and we find

t
"1—2f(E) 1 1 Idb

+4 —+ + — (C30) Near T„one may determine AT from (C22) and (3.49):
E 3b 15b' I b

In terms of b,
A/&T =0.23Pe'00'(T) =2 (1—t), (C40)

E= 01(be+ b &) &
where P,=1/kT, and t= T/T, . When 00(T) is small,

where 1 2f(00) =—tanh(pppp)~op, pp(T) (C41)

bo 00/01.

An approximate expression valid in the limit bp&(1

may be obtained by neglecting bp in the integral for
b)1, and also in terms in b' and higher in the integral
for b &1.The only integral in which bo' is not neglected
in comparison with b' is the 6rst term,

I'1-2f(E) 4 t "1—2f(E)db=- d0, (C33)J, E „J,

Thus the limiting expressions for E(q) as T~T, are

1 2(1—t)
E(q) = =, (q—+0);

Xl,'(T) Xz,'(0)
(C42)

3.750r
E(q) =

4q111,'(T)$0

18.3
ln(prqgp), (large q). (C43)

m'qgp

The close similarity of the expressions for the two
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limiting cases is evident. The reason for the similarity
is that J(R,T) varies slowly with T.

At temperatures very close to T„X becomes larger
than $p, so that }((T)approaches Xr, (T). A comparison
of penetration depths measured near T. to those meas-
ured at low temperatures would then be expected to
give

X(0) X(0) Xr, (0) X(0)
K2(1—t)P.

X(T) X&(0) X(T) X,(O)
(C44)

This is to be compared with the ratio 2 (1—t) & which the
empirical law, (1—t')&, gives as t-+1.

27K

(rl ref) dr, dr @*(ri .r )

X+(ri r„)t). (r,—r')l). (r,—r"). (D1)

This can be written in second quantized form, following
the notation of Sec. V, as

APPENDIX D. CORRELATION OF ELECTRONS
OF OPPOSITE SPIN

Insight into the coherent structure of our ground
state wave function may be obtained by an investiga-
tion of the correlation function for electrons of opposite
spin. For the normal metal (in the Bloch approxima-
tion), electrons of antiparallel spin are entirely uncorre-
lated while for electrons of parallel spin there is the
exchange correlation.

The correlation function p, , (r', r") for an r4-electron
system is defined as

an electron of given spin direction. The 6rst term is
just the average density, while the second gives the
eBects of correlation.

The integral of P~(r) gives the number of electrons
of opposite spin correlated with a given electron. This is

) Pg(r)dr=
po'(0) (1 )' p

dk
2N E2tr) ~ (lt p'+op'(0)

pp'(0) 1 dk p"" dp
kr' . (D5)

2n m' dh r "p p'+po'(0)

3 1 xn.

4krgp 2 r4

To evaluate this, we make use of the sharp maximum
of the integral near e=o and the fact that the sine
function is rapidly oscillating in this region for values
of r of interest, krr))1. We set (as in Sec. V)

where we have given slowly varying functions their
value at the Fermi surface, and have used (5.43) and
r4. =iV(0) pp(0). Thus the number of electrons of given
spin correlated to one of opposite spin is of the order of
the ratio of the number of electrons in coherent pairs
to the total number of electrons in the system.

The range of the spacial correlation may be deter-
mined by investigating Pz(r). We must then evaluate

r 1 q
'

(
e'"' 1 (

Pr+' k sinkrdk
I=l —

l
dk ~ (D6)

g2tr] ~ g P. 2 'tr(" pr—4 pp'+op'(0))p

p"" (r' r")= (+pl 0'" *(r")0"'*(r')0'"(r')0'"'(r")
I
+o)

(@pl c*(ki,o")cp (kp, o ')c(kp, a') c(k4,a ")
l +o)

k1, k2, k3, k4 and

k—kr+ p= kr+ p/(»o),
d8 p

(D7}

)(e4(k4 kz) r"+i(kp—kp) r' —(D2}

where %0 is our ground-state wave function.
Of particular interest is the correlation function for

electrons of opposite spin. If we define

PA =Pt 4+P4 t)

. ( p'l . ( ~

sinl kr+ lr sinkrr cosl r l,
»o& E»o &

(DS)

give slowly varying functions their value at the Fermi
surface, and drop terms antisymmetric in e. Then,
setting x= p/pp, we get

use the matrix elements obtained in Sec. IV, and set
x=x' —x", we get at the absolute zero of temperature

p, (r) =e[', n+Pg(r)), -
sinker

("cos(rx/trgo)dx

(x'+1)'*
(D9)

where

1 r1)p ( ( pp(0)
Pg(r)= l

—
l

~ dkdk' e"—"' ""
2e42tri J a EE'

(R

(D4)

where g=fuo/pp))1. The integral may be expressed as

q'cos(r/t(tp)x ( r )
dx=Zol

p" cos(rx/ $ )trp
dx, (D10)

(e+ 1)~

The integration is over R, the region of interaction

(l pl ()tt(o), and tt is the number of electrons of both
spin directions per unit volume. The terms in the
bracket give the number of electrons of opposite spin where Eo is a modified Bessel function. " Since u)&1
per unit volume one would find a distance r away from except for very small values of r, (x +1)p~x in the



1204 BARDEEN, COOPER, AND SCHRIEFFER

last integral T. hen, setting t = rx/(scabs), we have behavior of I z (r) is given by

mr hvo

Asymptotically

pr 5 t" cost
sinkrr Esf f

— dt . (D11)
O Jrfs'J or/+g 9gep'(0)

Eg(r)-
2(duo)s

(ep rq
sin'err sin'I—

t Pug scabs)

(krr) 4
(D13)

sinx00

Since a=hto/ep))1, the range of correlation is deter-x' mined by the Eo function which drops oG rapidly when
r/(ores)&1. Thus correlation distance is the order of

while Es(x) falls off exponentially. Thus the asymptotic sr&~~10 ' cm.
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The residual resistivities of dilute alloys of gold are calculated by the same method which was employed
in a similar study of the residual resistivities of copper and silver alloys. As in the earlier work, the calculated
results agree well with experiment with the exception of the alloys gold-copper and gold-silver. The
application of the modification of the Friedel sum condition to other problems is suggested.
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I. INTRODUCTION

" 'N a previous paper' attention was directed to the
~ ~ fact that the residual resistivities of dilute noble
metal alloys exhibited a very systematic dependence on
the position which the solute occupies in the periodic
table of the elements. The most pronounced dependence
is on the valence of the solute: d p, the residual resistiv-
ity per atomic percent solute, increases approximately
as the square of the valence difference Z. Since we are
concerned here with monovalent solvent metals,
we have Z=Z' —1 where Z' is the valence of the solute.
In addition to this well-known Z' dependence, for which
Mott' and FriedeP have provided satisfactory explana-
tions, hp, for a given Z, also depends systematically
on the row, or period, of the periodic table to which
the solute belongs. Solutes which occupy the silver row
of the periodic table invariably give rise to smaller
values of hp in every one of the noble metals than do
solutes which belong to the copper row. In the notation
of I, we can express this experimental observation by
the following inequalities

Calculations of Ap based on a free electron model,
such as those of Mott, Friedel and others4' diGer in
their numerical results but do all lead to the conclusion

Cu(Cu) Ag(Cu) Au(Cu)

Cu(Ag) Ag(Ag) Au(Ag)

Calculations of the residual resistivities of dilute
alloys of copper and silver where found to be in good
agreement with experimental results if the expansion of
the lattice in the neighborhood of a solute atom was
taken into account in a manner suggested by Harrison. '
In the present article we report results of similar
calculations on dilute alloys of gold.

II. CALCULATION AND RESULTS

It was shown in I that the discrepancy between
the observed values of the ratios Cu(Cu)/Cu(Ag)
and Ag(Cu)/Ag(Ag) and those calculated in a free
electron approximation could be obviated by a suitable
modi6cation of the Friedel sum condition. ' The Friedel
sum rule states that

(2/sr) Q t (21+1)ht =1V,

where bg are the phase shifts evaluated for electrons
at the Fermi surface and E is the excess charge,

4 F. J. Blatt, Phys. Rev. 99, 1708 (1955).
~ P. de Faget de Casteljau and J. Friedel, J. phys. radium 17,

27 (1956).
6 W. A. Harrison (to be published).


